343 research outputs found

    Instanton Contribution to the Pion Electro-Magnetic Formfactor at Q^2 > 1 GeV^2

    Get PDF
    We study the effects of instantons on the charged pion electro-magnetic formfactor at intermediate momenta. In the Single Instanton Approximation (SIA), we predict the pion formfactor in the kinematic region Q^2=2-15 GeV^2. By developing the calculation in a mixed time-momentum representation, it is possible to maximally reduce the model dependence and to calculate the formfactor directly. We find the intriguing result that the SIA calculation coincides with the vector dominance monopole form, up to surprisingly high momentum transfer Q^2~10 GeV^2. This suggests that vector dominance for the pion holds beyond low energy nuclear physics.Comment: 8 pages, 5 figures, minor revision

    Screening current effects in Josephson junction arrays

    Get PDF
    The purpose of this work is to compare the dynamics of arrays of Josephson junctions in presence of magnetic field in two different frameworks: the so called XY frustrated model with no self inductance and an approach that takes into account the screening currents (considering self inductances only). We show that while for a range of parameters the simpler model is sufficiently accurate, in a region of the parameter space solutions arise that are not contained in the XY model equations.Comment: Figures available from the author

    Engineering the Photonic Density of States with metamaterials

    Full text link
    The photonic density of states (PDOS), like its' electronic coun- terpart, is one of the key physical quantities governing a variety of phenom- ena and hence PDOS manipulation is the route to new photonic devices. The PDOS is conventionally altered by exploiting the resonance within a device such as a microcavity or a bandgap structure like a photonic crystal. Here we show that nanostructured metamaterials with hyperbolic dispersion can dramatically enhance the photonic density of states paving the way for metamaterial based PDOS engineering

    Proton-proton scattering above 3 GeV/c

    Get PDF
    A large set of data on proton-proton differential cross sections, analyzing powers and the double polarization parameter A_NN is analyzed employing the Regge formalism. We find that the data available at proton beam momenta from 3 GeV/c to 50 GeV/c exhibit features that are very well in line with the general characteristics of Regge phenomenology and can be described with a model that includes the rho, omega, f_2, and a_2 trajectories and single Pomeron exchange. Additional data, specifically for spin-dependent observables at forward angles, would be very helpful for testing and refining our Regge model.Comment: 16 pages, 19 figures; revised version accepted for publication in EPJ

    The Role of Color Neutrality in Nuclear Physics--Modifications of Nucleonic Wave Functions

    Get PDF
    The influence of the nuclear medium upon the internal structure of a composite nucleon is examined. The interaction with the medium is assumed to depend on the relative distances between the quarks in the nucleon consistent with the notion of color neutrality, and to be proportional to the nucleon density. In the resulting description the nucleon in matter is a superposition of the ground state (free nucleon) and radial excitations. The effects of the nuclear medium on the electromagnetic and weak nucleon form factors, and the nucleon structure function are computed using a light-front constituent quark model. Further experimental consequences are examined by considering the electromagnetic nuclear response functions. The effects of color neutrality supply small but significant corrections to predictions of observables.Comment: 37 pages, postscript figures available on request to [email protected]

    Exotic ρ±ρ0\rho^\pm\rho^0 state photoproduction

    Full text link
    It is shown that the list of unusual mesons planned for a careful study in photoproduction can be extended by the exotic states X±(1600)X^\pm(1600) with IG(JPC)=2+(2++)I^G(J ^{PC})=2^+(2^{++}) which should be looked for in the ρ±ρ0\rho^\pm\rho^0 decay channels in the reactions γNρ±ρ0N\gamma N\to\rho^\pm\rho^0N and γNρ±ρ0Δ\gamma N\to\rho^\pm \rho^0\Delta. The full classification of the ρ±ρ0\rho^\pm\rho^0 states by their quantum numbers is presented. A simple model for the spin structure of the γpf2(1270)p \gamma p\to f_2(1270)p, γpa20(1320)p\gamma p\to a^0_2(1320)p, and γNX±(N,Δ)\gamma N\to X^\pm (N, \Delta) reaction amplitudes is formulated and the tentative estimates of the corresponding cross sections at the incident photon energy Eγ6E_\gamma\approx 6 GeV are obtained: σ(γpf2(1270)p)0.12\sigma(\gamma p\to f_2(1270)p)\approx0.12 μ\mub, σ(γpa20(1320)p)0.25 \sigma(\gamma p\to a^0_2(1320)p)\approx0.25 μ\mub, σ(γNX±Nρ±ρ0N)0.018\sigma(\gamma N\to X^\pm N\to\rho^\pm\rho^0N)\approx0.018 μ\mub, and σ(γpXΔ++ρρ0Δ++)0.031\sigma(\gamma p\to X^-\Delta^{++ }\to\rho^-\rho^0\Delta^{++})\approx0.031 μ\mub. The problem of the X±X^\pm signal extraction from the natural background due to the other π±π0π+π\pi^\pm\pi^0 \pi^+\pi^- production channels is discussed. In particular the estimates are presented for the γph1(1170)π+n\gamma p\to h_1(1170)\pi^+n, γpρ+nπ+π0π+πn\gamma p\to\rho'^{+}n\to \pi^+\pi^0\pi^+\pi^-n, and γpωρ0p\gamma p\to\omega\rho^0p reaction cross sections. Our main conclusion is that the search for the exotic X±(2+(2++))X^\pm(2^+(2^{++})) states is quite feasible at JEFLAB facility. The expected yield of the γNX±Nρ±ρ0N\gamma N\to X^\pm N\to\rho^\pm\rho^0N events in a 30-day run at the 100% detection efficiency approximates 2.8×1062.8\times10^6 events.Comment: 19 pages, revtex, 1 figure in postscipt, some comments and references added, a few minor typos corrected, to be published in Phys. Rev.

    Unraveling hadron structure with generalized parton distributions

    Full text link
    The generalized parton distributions, introduced nearly a decade ago, have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes--the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling and QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons. The theory of these processes requires and implies full control over diverse corrections and thus we outline the progress in handling higher-order and higher-twist effects. We catalogue corresponding results and present diverse techniques for their derivations. Subsequently, we address observables that are sensitive to different characteristics of the nucleon structure in terms of generalized parton distributions. The ultimate goal of the GPD approach is to provide a three-dimensional spatial picture of the nucleon, direct measurement of the quark orbital angular momentum, and various inter- and multi-parton correlations.Comment: 370 pages, 62 figures; Dedicated to Anatoly V. Efremov on occasion of his 70th anniversar

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore