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Unità INFM and Dipartimento di Fisica, University of Salerno, I-84081 Baronissi (SA), Italy

and Physikalisches Institut, Lehrstuhl Experimentalphysik II, University of Tu¨bingen, D-72076 Tu¨bingen, Germany

G. Rotoli
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The purpose of this work is to compare the dynamics of arrays of Josephson junctions in the presence of a
magnetic field in two different frameworks: the so-calledXY frustrated model with no self-inductance and an
approach that takes into account the self-field generated by the screening currents~considering self-inductances
only!. We show that, while for a range of parameters the simpler model is sufficiently accurate, in a region of
the parameter space solutions arise that are not contained in theXY model equations.

I. INTRODUCTION

Arrays of Josephson junctions have been proposed more
than two decades ago to enhance the emission of
microwaves.1 In fact, it is well known that the power avail-
able from a single junction is not enough for many practical
applications, and therefore the achievement of coherent mo-
tion of arrays of junctions is an important issue for device
applications.2 Apart from the applications, two-dimensional
arrays have been also investigated as an interesting nonlinear
system both experimentally and theoretically.3,4 In the study
of such arrays two classes of models have been proposed to
describe the dynamics:

~1! Models that neglect the self-field effects. These model
are often called ‘‘uniformly frustratedXY, ’’ 5–7 because the
Hamiltonian for this model is similar to that of a square flat
lattice of spins in the magnetic field~for that reason it is also
called the spin-glass model!.

~2! Models that include, to some extent, the self-field ef-
fects. The simplest version of this model assumes that the
self-field is generated by a ‘‘screening current,’’ which
shields the magnetic field only in the two cells adjacent to
each branch where a current is flowing~in the following this
model will be termed the NS model after Nakajima and
Sawada, who introduced it8!. More generally, one should
consider the effect of the screening in all cells~full mutual
inductance approach9,10!.

To neglect screening currents greatly simplifies the prob-
lem. Moreover, the formal similarity with other well-known
systems allows us to take advantage of an accumulated ex-
perience in those contexts. Model~2! has been used less
extensively also because, in its complete form~which in-
cludes all mutual inductances!, it requires complex numeri-
cal routines, and the resulting equations are difficult to
handle analytically.9,10 Nevertheless the comparison among
the different forms has already been addressed. For instance
Phillips et al.9 have investigated the static properties of the

vortices; they have showed that the shape of a static fluxon in
the NS is different from the shape of the static model in the
full approach. Model~2! has also been used extensively to
predict the magnetic behavior of two-dimensional arrays.10,11

Domı̀nguez and Jose` have reviewed the topic in Ref. 4. In
spite of the simplicity of model~1!, it has been able to ex-
plain most of the experimental observations on two-
dimensional arrays, for example, giant Shapiro steps.12 It is
therefore of interest to establish the limits of validity of this
approach that should be taken into account when interpreting
the experimental data. Moreover, to develop coherent
sources based on large two-dimensional arrays of Josephson
junctions, better performance can be obtained if the junctions
in the array have larger critical currents; in fact, the emitted
power of a single junction is proportional to the square of the
critical current, while the emitted power of a mismatched
coherent array will be}N2I 0

2 , whereN is the number of
locked junctions in the array.13 In the following it will be
shown that screening currents are small when the coupling,
proportional to the inverse of the critical current, is too
strong. Therefore, model~2! seems more suitable to describe
arrays usable as microwave sources.

The purpose of this work is to explore the parameter
space looking for the limits of validity of model~1! rather
than to focus on a specific experiment. We will show that, for
certain ranges of the parameters and at least for the simplest
arrays, the solutions of model~1! are different from the so-
lutions of model~2!. For the sake of simplicity, we will com-
pare the results obtained only with the simplest version of
model ~2!, the NS. However, it should always be borne in
mind that in some cases solutions arising within the context
of model~2! can be quite different.9 To fully understand the
differences between the two approaches we will present a
step-by-step derivation of the dynamical equations. As a tu-
torial example we will start with a discussion of a simple dc
superconducting quantum interferometer device~SQUID!
containing only two junctions. This well-known case will
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lead us to some general considerations on the role of the
screening currents.

It will be shown that theXY equations cannot be easily
derived from NS equations taking some limits of the param-
eters. It will be further shown numerically that there is a
region of the parameter space where it is not possible to
assume that the screening current is negligible. Next, we will
consider the most elementary cell of a two-dimensional ar-
ray, i.e., a square cell with junctions~and inductances! on
each branch.14 We will again derive the equations, and we
will numerically show that the screening currents are not
negligible for some ranges of the parameters. A comparison
with the actual two-dimensional arrays will be performed for
some cases to check that the results for the single cell are
reliable. Finally, the microscopic dynamics in the two re-
gimes ~with negligible and non-negligible screening cur-
rents! will also be shown.

II. THE SQUID MODEL

A dc SQUID is a superconducting loop interrupted by two
junctions.13 Since there is a single superconducting loop, the
fluxoid quantization, neglecting screening currents, is given
by

f12f252p f , ~1!

wheref1 andf2 are the gauge-invariant phases across the
two junctions, andf5Fa /F0 is the frustration or the ratio
between the applied fluxFa and the quantum flux
F05\/2e. Assuming the resistively shunted junction~RSJ!
model for the junctions,13 the equation of motion of the
phase difference is given by the current balance across a
branch. In normalized units it reads:

f̈11aḟ11sinf15g, ~2!

f̈21aḟ21sinf25g. ~3!

Here time is normalized with respect to the inverse of the
Josephson frequencyv j52pI 0 /CF0 (C is the capacitance
of the junction andI 0 is the maximum Josephson current!,
a5(F0/2pCR2I 0)

1/2 is the damping term (R is the shunt
resistance!, andg is the bias current normalized toI 0 . Here
and in the following we will assume the parameters of the
junctions to be identical.

Taking the sum of Eqs.~2,3! and inserting Eq.~1!, the
equation of motion forf1 is readily obtained:

g5f̈11aḟ11
1

2
@sinf11sin~f122p f !#. ~4!

Under the approximation of negligible screening current, the
SQUID is described by Eq.~4!. Although it is possible to
recognize some characteristics of the SQUID, in some re-
spects Eq.~4! is qualitatively incomplete. To better recognize
the difference, it is useful to follow the complete derivation
of the equation considering also the screening current,15 i.e.,
modifying Eq.~1! as follows:

f12f252p f1
2pL

F0
I s ~5!

~hereL is the inductance of the superconducting loop and
I s is the screening current in the loop!. What we here call
screening current, following Ref. 13, has also been called
‘‘mesh current’’ more recently.9,10 Besides the notation, it is
important to note that this loop current, while always con-
tributing to the effective magnetic field@i.e., generating a
self-field, see Eq.~5!#, does not generally screen out com-
pletely the magnetic field, as it does in the static case. The
current balance now is modified by the presence of the
screening current:

f̈11aḟ11sinf15g2
I s
I 0
, ~6!

f̈21aḟ21sinf25g1
I s
I 0
. ~7!

Inserting Eq.~5! will lead to two coupled equations rather
than one (b l is the SQUID parameterb l52pLI 0 /F0)

f̈11aḟ11sinf15g2
1

b l
~f22f1!1

2p

b l
f , ~8!

f̈21aḟ21sinf25g1
1

b l
~f22f1!2

2p

b l
f . ~9!

The most obvious difference between Eqs.~8! and~9! and
theXYmodel is the increased number of equations: while in
the XY approach the dynamics of the junctions are essen-
tially identical @apart from an additive constant, see Eq.~1!#
in the NS context the two dynamics are governed by two
coupled differential equations. This remarkable difference is
a consequence of the fact that the screening current is a dy-
namical variable itself, and the fluxoid quantization can be
used to eliminate it from the equations in the NS approach,
whereas the quantization rule can be used to eliminate a
phase variable in theXY approach. A common characteristic
of the two sets of equations is that forf50 a solution is the
single-junction free running solution. The difference is that,
while for the XY system this is the only solution, the NS
system can allow for other types of solutions, at least for
some parameters values. The NS model allows the presence
of ‘‘propagating solutions,’’ in the sense that an excitation in
a junction can propagate to another, giving rise to the so-
called ‘‘beating solutions.’’16,17 As a consequence, the NS
approach will reveal a much richer dynamics than theXY
approach; for instance, it can show hysteresis also in the
limit of negligible capacitance~in this limit the second de-
rivative term disappears!, while theXY equation cannot. An-
other remarkable difference is that forf51/2 theXY equa-
tion becomes linear, while the NS set of equations still
retains its nonlinear terms.

To get a deeper insight into the difference between the
two approaches, we have numerically evaluatedI s , integrat-
ing the Eqs.~8! and ~9!. To estimate the importance ofI s in
the dynamics we have plotted the maximum of its absolute
value:

I s
m5maxuI s /I 0u. ~10!

Initial conditions are always chosen asf15f25sin21g if
g,1 and zero otherwise; moreover,ḟ i was set to zero. We
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have used two numerical methods~a simple fourth-order
Runge Kutta and a more elaborate Bulirsch Stoer! obtaining
consistent results. In Fig. 1 we showI s

m as a function of the
bias currentg. The two curves are obtained by slowly in-
creasing~diamonds! or decreasing~crosses! the bias current.
For both curves there is a region where the screening current
can reach significant values. To check thatI s

m is really a
significant test to discriminate where solutions of the NS
equations are different from those of theXYmodel, we have
plotted the microscopic dynamics in Fig. 2 for three points,
two for zones of the bias in whichI s

m is not negligible, and
one for higher bias value. It is evident that in the first two
cases the differencef22f1 is not just a constant, as as-
sumed by theXY model@see Eq.~1!#, while this is indeed a
good approximation whenI s

m is negligible.

III. THE CELL MODEL

As a first step toward the study of two-dimensional arrays,
we will consider in this section the most elementary cell of a
square array~see Fig. 3!. This cell has already been used to
infer the properties of two-dimensional arrays~with a rf bias!
by Sohn and Octavio.14A row of such cells has been consid-

ered to investigate the stability of Josephson array.18 In the
XY approach the equation for the fluxoid quantization reads
~see Fig. 3 for notation!:

V12H22V21H152p f . ~11!

Moreover, for the symmetry of the system the following
identity also holds:14,18

H152H25H. ~12!

The current balance in the four nodes can be written as (JX
denotes the current flowing through the RSJ elements of the
junctionX!

g5JH2JV1, ~13!

g52JH2JV2, ~14!

g52JH2JV2, ~15!

g5JH2JV1. ~16!

Taking the sum and difference of the independent equa-
tions, the dynamics of the cell in theXY model is governed
by the following two equations:14

S̈1aṠ12sinS 12SD cosS 12D D522g, ~17!

D̈1aḊ1sinS 12D D cosS 12SD1sinS 12D2p f D50,

~18!

whereS5V11V2 andD5V12V2 .
For the NS approach, as usual, we have to consider also

the screening current, while for the same symmetry reasons
Eq. ~12! still holds. In conclusion Eq.~11! becomes

V12V212H52p f2
2pLI s

F0
, ~19!

and the equations of motion of the cell are

FIG. 1. Maximum screening current vs bias current for a
SQUID. Parameters of the simulations area50.25, b l51.0, and
f50.5.

FIG. 2. Dynamics of the phase difference of the two junctions of
the SQUID forg50.18~solid line!, g50.70~short-dotted line!, and
g51.0 ~dotted line!. Other parameters are the same as in Fig. 1.

FIG. 3. Schematic of the elementary cell of the two-dimensional
square array. Crosses denote the Josephson elements.
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V̈11aV̇11sinV152g1
1

b l
~V12V212H !2

2p

b l
f ,

~20!

V̈21aV̇21sinV252g2
1

b l
~V12V212H !1

2p

b l
f ,

~21!

Ḧ1aḢ1sinH5
1

b l
~V12V222H !2

2p

b l
f . ~22!

For comparison we write also Eqs.~20!–~22! in terms of
the variablesS andD; in this case the equations yield

S̈1aṠ12sinS 12SD cosS 12D D522g, ~23!

D̈1aḊ22cosS 12SD sinS 12D D5
2

b l
~D12H !2

4p

b l
f ,

~24!

Ḧ1aḢ1sinH5
1

b l
~D12H !2

2p

b l
f . ~25!

Equations~23! and ~17! are identical, but Eq.~18! is not
easily recognized as an approximations of Eqs.~24! and~25!.
Therefore, the considerations done for the SQUID also apply
here: the two approaches differ in the number of equations,
and it seems difficult to predicta priori for which parameter
values the screening current is negligible. Rather, we numeri-
cally integrate Eqs.~20!–~22! and in Fig. 4 we show the
dependence ofI s

m on the parameterb l as a function of the
bias current for two different values of the damping coeffi-
cient a; in Fig. 5 is shown the behavior of the screening
current as a function of the frustration and the bias current,
for the same values of the damping coefficient. The results
shown in these figures can be summarized as follows:

~1! For g..1 the screening current decreases. This cor-
responds to the observation that~in the overdamped limit!
for high bias current the solutions are nearly sinusoidal~plus
a constant slope! and with a constant phase shift in presence
of magnetic field.18 This state corresponds to negligible
screening current.

~2! For high inductance values~for instance whenb l>2
for a50.25 andf50.5) the screening current is also negli-
gible. This is not surprising because for high values of the
inductance the current induced by the external field is small.
On the contrary, for the same values ofa and f and forb l
values down to 0.1~a fairly low value for practical arrays19!,
the screening current increases, up to values where it is not
negligible; however, forb l,0.1 this region shrinks. As for
the value ofb l actually used in the experiments it varies
from b l50.062~Ref. 20! to b l50.8 ~Ref. 21!.

~3! The capacitance and the dissipation play an important
role in controlling the screening current effect. Significant
screening current are observed fora,1, i.e., for relatively
high values of the capacitance or for low values of the dis-
sipation.

It is also important to notice that, as expected, hysteresis
plays an important role. In Figs. 4 and 5 we have always

used as initial conditions all the phases and phase derivatives
equal to zero, therefore no hysteresis is shown. On the other
hand, as mentioned for Fig. 1, hysteresis does exist in the
system. Also in the cell simulations of the underdamped case
for a different choice of the initial conditions there are solu-
tions, not shown in Fig. 5~a!, that exhibit a nonzero screening
current. It is also noteworthy that in Fig. 5~a! the behavior of
the screening current is irregular. The irregularity is caused,
in fact, by hysteresis.

As we have pointed out in the introduction, two-
dimensional arrays are of interest if a large number of junc-
tions can be locked together. Even if we believe that the
simple cell studied in the preceding section offers the distinct
advantage of simplicity and illustrates the basic mechanism,
it is quite natural to ask if it can also furnish quantitative
predictions on larger arrays. To check that the results ob-
tained so far are not crucially dependent on the fact that we
are considering only an elementary cell, we have investi-
gated the behavior of larger arrays in few cases, using the NS
equations.8 In Fig. 6 the behavior of a 10310 array is shown
where zones of screening current comparable with the el-
ementary cell can be clearly seen; in these zones the overall
dynamics can be directly compared with that of the elemen-
tary cell ~see also the discussion below!. These zones corre-
sponds to a large range of the parameters; however, besides
these zones in the low damping case@a50.25, see Fig.
6~a!#, a region of very large maximum screening current is
shown: this region corresponds to the penetration of static
fluxons in the array and does not have any correspondence in

FIG. 4. Three-dimensional~3D! plot of the maximum of the
screening currentI s

m vs the bias currentg and the SQUID parameter
b l for the elementary cell for~a! a50.25 and~b! a51.0. The
frustration is set tof50.5.
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the cell case; further studies of this region will be carried out
in the future.

IV. MICROSCOPIC DYNAMICS

So far we have dealt only with the ‘‘macroscopic’’ quan-
tity I s

m . Although we claim that this is sufficient to discrimi-
nate between states where model~1! and model~2! do not
give consistent results~because the set of equations are the
same if I s is negligible! it is interesting to investigate in
which sense the dynamics differ when the screening current
is not negligible. For sake of simplicity we will concentrate
on the microscopic dynamics in the elementary square cell.

We have systematically found that when the screening
current is not negligible there appear solutions that are close
to the well known beating solutions for SQUID’s,16,17 i.e., to
solutions that correspond to the entry and propagation of
fluxons across the cell or to the motion of fluxons across the
array. To recognize this, we have shown in Fig. 7 the maxi-
mum screening current as a function of the voltage behavior
together with the IV characteristic. It is evident that a large
screening current is associated to a resonant step that is remi-
niscent of the Fiske steps in long Josephson-junctions. In
fact, in the long Josephson-junction language resonant struc-
tures are called Fiske steps if they occur in the presence of a
magnetic field and zero-field steps if they occur in absence of
magnetic field.13

It is also evident that there is a sharp change in the be-
havior of I s

m when the system switches from the resonant
step to another solution. To better understand the nature of
this transition, we have plotted in Fig. 8 the voltage across
the two vertical junctions for two values of the bias current:
just before the switch and just after. The difference between
the two dynamics is that, while on the resonant step there is
a large voltage pulse, after the switch the dynamics is much

FIG. 5. 3D plot of the maximum of the screening currentI s
m vs

the bias currentg and the frustrationf for the elementary cell for
~a! a50.25 and ~b! a51.0. The SQUID parameter is set to
b l51.0.

FIG. 6. Maximum screening current as a function ofg and f for
an array 10310 with b l51. Parameters of the simulations are~a!
a50.25, and~b! a51.0.

FIG. 7. Voltage~dotted line! and ofI s
m ~solid line! as a function

of the bias current in the square cell. Parameters of the simulations
are:a50.25, b l51, and f50.5.

2736 53A. PETRAGLIA, G. FILATRELLA, AND G. ROTOLI



more uniform with a smaller modulation of the voltage. We
claim that the transition is similar to that observed for one-
dimensional arrays or for long Josephson junctions.22,23

A comparison between Figs. 1 and 2 and Figs. 7 and 8
strongly indicates that the dynamics are very similar to that
observed for the simple SQUID: in fact, as in the SQUID
case, resonant states appear, in general, together with high
values of screening currents, and, similarly, the dynamics
appears to be uniform where screening currents are negli-
gible.

The different nature of the two solutions can be clearly
seen in Fig. 9, where we show a plot of the time delay across
the two vertical junctions of two peaks of voltage. Indeed,
while on the resonant step this time delay roughly tends to a
constant~corresponding to the maximum speed of propaga-
tion of a signal across the system!, in the state where the
screening currents are negligible the speed increases with
current. This suggests that in the latter mode there is no
actual signal propagating across the cell but rather a modu-
lated solution similar to that obtained in Ref. 18 for over-
damped junctions in the high bias limit. It should be noticed

that the very concept of a localized solution propagating
across the array is not applicable to the solution arising from
theXY model. If we adopt as a working definition of propa-
gating fluxon an excitation of roughly one flux quantum
moving from a cell to another, then to neglect screening cur-
rents prevents the appearance of such solutions because the
magnetic field is supposed to be uniform across the array.
For these solutions, while it is still possible to identify their
center, the field is spread across the whole array: in this sense
it is not unphysical that the propagation speed, being a phase
velocity, can be infinity~see Fig. 9!. Since theXY model
does not allow signal propagation, we conclude that it can be
an approximation for the NS equations~as well as any model
including screening current effects through mutual induc-
tances! only if the latter do not carry a localized solution
propagating across the array.

Since the uniform regime occurs for higher bias, an inter-
esting question is if the border between those two regions
corresponds to the border between the regions of flux motion
and uniform solutions devised by Lachenmannet al.with the
low-temperature scanning electron microscopy~LTSEM!
technique.24 When comparing the thresholds obtained nu-
merically with those observed experimentally it is quite ar-
bitrary to decide how small the screening current should be
to lead to the disappearance of the signal measured by the
LTSEM; therefore a detailed quantitative comparison is not
possible on the basis of the results shown here. However, the
measured threshold for an array 10310 critically damped
(a.1) isg.4,24 a region where our simulations predict that
the screening current is small:I s

m.0.16 or roughly 4% of
the bias current at most, i.e., forf50.5.

It is nevertheless possible to notice that both the screening
current and the LTSEM signal indicates an homogeneous
solution for high bias current.24 If the hypothesis that the two
thresholds are related is true, it is possible to go further and
to speculate that the coherent emission from Josephson-
junctions arrays is related to the presence of non-negligible
screening currents.

V. CONCLUSIONS

We have proven that the choice of the more appropriate
model for Josephson-junction arrays depends on the param-
eters, especially on the bias current and the SQUID param-
eterb l . It is possible, in fact, to show numerically that for
certain regions of the parameters the contribution to flux
quantization arising from the screening current, neglected in
the so-calledXY model, is important, and this can happen
also for relatively small values of the inductance of the loop.
We have traced the origin of this to the structure of the equa-
tions, noticing that the screening current is a dynamical vari-
able itself whose value cannot be easily predicteda priori,
and we were able to investigate its behavior only numeri-
cally. We have also found that the presence of a non-
negligible screening current prevents the occurrence of uni-
form solutions to set in and rather induces solutions that are
known, in the context of SQUID’s, as beating solutions.16,17

Finally, there are reasons to believe that there might be a
connection between the presence of significant screening
currents and the phenomenon of ‘‘row switching’’ observed
with the technique of LTSEM.24 It is worth recalling that we
have~a! neglected any spread of the parameters and~b! re-
tained self-inductances only and neglected mutual induc-
tances.

FIG. 9. Time delay between two peaks of the voltage in two
adjacent vertical junctions forb l51 ~plusses! andb l50.5 ~stars!.
Parameters of the simulations area50.25 andf50.5.

FIG. 8. Dynamics of the voltage across the vertical junctions in
the square cell forg50.84 ~solid line and dotted line! and
g50.86 ~dotted lines with shorter length!. Parameters of the simu-
lations are the same as Fig. 7.
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