93 research outputs found

    Healthier and Independent Living of the Elderly: Interoperability in a Cross-Project Pilot

    Get PDF
    The ageing of the population creates new heterogeneous challenges for age-friendly living. The progressive decline in physical and cognitive skills tends to prevent elderly people from performing basic instrumental activities of daily living and there is a growing interest in technology for aging support. Digital health today can be exercised by anyone owning a smartphone and parameters such as heart rate, step counts, calorie intake, sleep quality, can be collected and used not only to monitor and improve the individual’s health condition but also to prevent illnesses. However, for the benefits of e-health to take place, digital health data, either Electronic Health Records (EHR) or sensor data from the IoMT, must be shared, maintaining privacy and security requirements but unlocking the potential for research an innovation throughout EU. This paper demonstrates the added value of such interoperability requirements, and a form of accomplishing them through a cross-project pilot

    Predicting Heart Failure Patient Events by Exploiting Saliva and Breath Biomarkers Information

    Get PDF
    The aim of this work is to present a machine learning based method for the prediction of adverse events (mortality and relapses) in patients with heart failure (HF) by exploiting, for the first time, measurements of breath and saliva biomarkers (Tumor Necrosis Factor Alpha, Cortisol and Acetone). Data from 27 patients are used in the study and the prediction of adverse events is achieved with high accuracy (77%) using the Rotation Forest algorithm. As in the near future, biomarkers can be measured at home, together with other physiological data, the accurate prediction of adverse events on the basis of home based measurements can revolutionize HF management

    A Comprehensive Analysis of Choroideremia: From Genetic Characterization to Clinical Practice.

    Get PDF
    Choroideremia (CHM) is a rare X-linked disease leading to progressive retinal degeneration resulting in blindness. The disorder is caused by mutations in the CHM gene encoding REP-1 protein, an essential component of the Rab geranylgeranyltransferase (GGTase) complex. In the present study, we evaluated a multi-technique analysis algorithm to describe the mutational spectrum identified in a large cohort of cases and further correlate CHM variants with phenotypic characteristics and biochemical defects of choroideremia patients. Molecular genetic testing led to the characterization of 36 out of 45 unrelated CHM families (80%), allowing the clinical reclassification of four CHM families. Haplotype reconstruction showed independent origins for the recurrent p.Arg293* and p.Lys178Argfs*5 mutations, suggesting the presence of hotspots in CHM, as well as the identification of two different unrelated events involving exon 9 deletion. No certain genotype-phenotype correlation could be established. Furthermore, all the patients´ fibroblasts analyzed presented significantly increased levels of unprenylated Rabs proteins compared to control cells; however, this was not related to the genotype. This research demonstrates the major potential of the algorithm proposed for diagnosis. Our data enhance the importance of establish a differential diagnosis with other retinal dystrophies, supporting the idea of an underestimated prevalence of choroideremia. Moreover, they suggested that the severity of the disorder cannot be exclusively explained by the genotype

    Cystinosin, MPDU1, SWEETs and KDELR Belong to a Well-Defined Protein Family with Putative Function of Cargo Receptors Involved in Vesicle Trafficking

    Get PDF
    Classification of proteins into families based on remote homology often helps prediction of their biological function. Here we describe prediction of protein cargo receptors involved in vesicle formation and protein trafficking. Hidden Markov model profile-to-profile searches in protein databases using endoplasmic reticulum lumen protein retaining receptors (KDEL, Erd2) as query reveal a large and diverse family of proteins with seven transmembrane helices and common topology and, most likely, similar function. Their coding genes exist in all eukaryota and in several prokaryota. Some are responsible for metabolic diseases (cystinosis, congenital disorder of glycosylation), others are candidate genes for genetic disorders (cleft lip and palate, certain forms of cancer) or solute uptake and efflux (SWEETs) and many have not yet been assigned a function. Comparison with the properties of KDEL receptors suggests that the family members could be involved in protein trafficking and serve as cargo receptors. This prediction sheds new light on a range of biologically, medically and agronomically important proteins and could open the way to discovering the function of many genes not yet annotated. Experimental testing is suggested

    Addressing the clinical unmet needs in primary Sjögren's Syndrome through the sharing, harmonization and federated analysis of 21 European cohorts

    Get PDF
    For many decades, the clinical unmet needs of primary Sjögren's Syndrome (pSS) have been left unresolved due to the rareness of the disease and the complexity of the underlying pathogenic mechanisms, including the pSS-associated lymphomagenesis process. Here, we present the HarmonicSS cloud-computing exemplar which offers beyond the state-of-the-art data analytics services to address the pSS clinical unmet needs, including the development of lymphoma classification models and the identification of biomarkers for lymphomagenesis. The users of the platform have been able to successfully interlink, curate, and harmonize 21 regional, national, and international European cohorts of 7,551 pSS patients with respect to the ethical and legal issues for data sharing. Federated AI algorithms were trained across the harmonized databases, with reduced execution time complexity, yielding robust lymphoma classification models with 85% accuracy, 81.25% sensitivity, 85.4% specificity along with 5 biomarkers for lymphoma development. To our knowledge, this is the first GDPR compliant platform that provides federated AI services to address the pSS clinical unmet needs. © 2022 The Author(s

    Exit and Failure of Credit Unions in Brazil: A Risk Analysis

    Get PDF
    This study aims to investigate the factors that affect the market exit of Brazilian singular credit unions from 1995 to 2009; it also identifies and lists the determinants of various types of market exits and analyzes whether profitability is a significant factor for credit union survival. This study was conducted with accounting data provided by the Central Bank of Brazil, which derives only from individual cooperatives, i.e. singular credit unions. Quarterly financial statements from these credit unions that were active from 1995 to the second quarter of 2009 were employed, totaling 71,325 observations for 1,929 credit unions. Based on survival and the model of competing risks (such as the Cox, Exponential, Weibull, Gompertz, and Competing Risk models), the results show that there is no statistical evidence to ensure a correlation between profitability and credit union survival. The results also suggest that the size of credit unions plays a key role in their survival and longevity and that their funding and investment management are related to their survival and risk of market exit. In conclusion, the results confirm the initial idea that the duality inherent to credit unions - cooperative principles versus economic efficiency - might influence the stability, survival, and longevity of these institutions. Such results may also imply that a credit union embracing the rationale of a private bank will become more estranged from its members, something which will hinder its future operations and increase the likelihood of its exit from the market

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore