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Abstract
Choroideremia (CHM) is a rare X-linked disease leading to progressive retinal degeneration

resulting in blindness. The disorder is caused by mutations in the CHM gene encoding

REP-1 protein, an essential component of the Rab geranylgeranyltransferase (GGTase)

complex. In the present study, we evaluated a multi-technique analysis algorithm to

describe the mutational spectrum identified in a large cohort of cases and further correlate

CHM variants with phenotypic characteristics and biochemical defects of choroideremia

patients. Molecular genetic testing led to the characterization of 36 out of 45 unrelated CHM

families (80%), allowing the clinical reclassification of four CHM families. Haplotype recon-

struction showed independent origins for the recurrent p.Arg293* and p.Lys178Argfs*5
mutations, suggesting the presence of hotspots in CHM, as well as the identification of two

different unrelated events involving exon 9 deletion. No certain genotype-phenotype corre-

lation could be established. Furthermore, all the patients´ fibroblasts analyzed presented

significantly increased levels of unprenylated Rabs proteins compared to control cells; how-

ever, this was not related to the genotype. This research demonstrates the major potential

of the algorithm proposed for diagnosis. Our data enhance the importance of establish a dif-

ferential diagnosis with other retinal dystrophies, supporting the idea of an underestimated

prevalence of choroideremia. Moreover, they suggested that the severity of the disorder

cannot be exclusively explained by the genotype.
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Introduction
Choroideremia (CHM; MIM 30100) is an X-linked retinal dystrophy affecting 1 in 50.000 indi-
viduals [1]. It is caused by mutations in the CHM gene, encoding the Rab escort protein 1
(REP-1). Typically, males with CHM develop progressive peripheral visual field loss beginning
with night blindness in their teenage years, leading to complete blindness later in life. Female
carriers are generally asymptomatic, although mild signs as pigmentary changes can be
observed. These symptoms are very similar to those of other retinal dystrophies, including RP,
so a proper differential diagnosis needs to be carried out.

The CHM gene is located on chromosome X at position Xq21.2. Its mRNA (NM_000390)
spans 15 exons and is 5442 bp long. The open reading frame is 1962 bp and encodes the ubiq-
uitously expressed protein REP-1, composed of 653 aminoacids. REP-1 is an essential compo-
nent of the Rab geranylgeranyltransferase (GGTase) complex [2]. It binds unprenylated Rab
proteins and escorts them to Rab-GGTase for the transfer of geranyl-geranyl groups, neces-
sary for membrane association and target-protein recognition [3–5]. In the absence of this
post-translational modification, Rabs proteins cannot participate in pathways of intracellular
vesicular transport. Since REP-1 is particularly crucial for the function of the retinal pigment
epithelium and photoreceptors, its depletion leads to cell degeneration and subsequent cho-
roidal tissue loss.

Mutational spectrum characterized in CHM revealed deletions, insertions, duplications,
translocations, nonsense, splice-site, frameshift and missense mutations (http://www.lovd.nl/
CHM). Genotype-phenotype correlations remain unclear, limited information is available on
the early phenotypic manifestations in molecularly characterized patients; and the precise dis-
ease mechanisms are still unknown. The aim of this study is to describe the mutational spec-
trum in our cohort of cases as well as the multi-technique diagnostic pipeline to follow up in
patients with CHM.We also aimed at further correlating CHM variants with phenotypic char-
acteristics and biochemical defects of choroideremia patients.

Material and Methods

Ascertainment of patients
All patients´ samples proceed from the Biobank of University Hospital Fundacion Jimenez
Diaz. We have analyzed forty-one unrelated families, mostly from Iberian population, with an
initial clinical diagnosis of CHM. Four additional families reclassified were also studied. Writ-
ten informed consent was obtained from patients participating in this study, and the research
protocols were approved by the bioethical committee and were in accordance with the Declara-
tion of Helsinki and further reviews (Fortaleza, 2013). Diagnosis of choroideremia was deter-
mined in patients with suspected or not excluded X linked inheritance and with night
blindness, peripheral vision loss, characteristic fundus appearance with patchy areas of chorior-
etinal degeneration generally begin in the mid-periphery of the fundus and reduced scotopic
electroretinogram response. The ophthalmic tests performed included best-corrected visual
acuity (BCVA), intrinsic and extrinsic motility, anterior pole and fundus examination, static
perimetry, color testing, and Ganzfeld electroretinography according to the International Soci-
ety for Clinical Electrophysiology of Vision (ISCEV) Standards. All patients´ DNA samples
were extracted as previously described [6].

Direct sequencing of the CHM gene
All exons of the CHM gene, along with adjacent intronic sequences, were amplified from geno-
mic DNA by PCR using primers and conditions previously described [6].
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Copy number variation (CNV) analysis
CNV analysis was initially performed using quantitative fluorescent PCR (qF-PCR) and/or
Multiplex Ligation dependent Probe Amplification (MLPA). For qF-PCR, multiplex amplifica-
tion was performed as follows: for each sample two reactions, set A and set B containing prim-
ers to amplify even- or odd-numbered exons, respectively, were set up. In each of the sets,
control primers along chromosome X (control-A and E), as well as in the regions adjacent to
the CHM gene that are involved in some rearrangements, previously detected in CHM patients
(control-B, C and D), were included. In all cases, forward primers were labelled with FAM fluo-
rochrome. Amplification products were separated by electrophoresis (ABI Prism 3130; Applied
Biosystems) and analyzed with a software package (GeneMapper v3.5; Applied Biosystems).
For MLPA, 250 ng of genomic DNA were used as starting material with the SALSA P366-A1
CHM-RP2-RPGRMLPA kit available fromMRC Holland, Amsterdam (www.mrc-holland.
com) following the manufacturer´s instructions. To characterize complete CHM deletions, we
used Agilent Human Genome CGHMicroarray 244K (with median spacing of 8.9kb) and Agi-
lent SurePrint G3 CGH+SNP 2x400k Microarray kits (containing 292,097 CGH probes and
119,091 SNP probes with median spacing of 7.2kb). To characterize partial CHM deletions we
used the custom aCGH 8X60k using Agilent SurePrint G3 CGH, which represents an average
distribution of one probe per 150 bp in the CHM gene. Briefly, patients and sex-matched con-
trol samples were labeled after the digestion with Cy3-dUTP and Cy5-dUTP fluorochromes
using the Sure Tag DNA Labeling Kit (Agilent Technologies). The labeled products were puri-
fied, hybridized and washed according to Agilent protocols. The results of 8X60k, 2X400k and
244k kits were analyzed by Agilent CytoGenomics v.2.7 and Agilent DNA Analytics 4.0 soft-
wares, using default analysis methods—CGH v2 with the ADM-2 aberration and ADM1 aber-
ration algorithms, respectively.

Cytogenetic studies
Karyotype and cytogenetic studies were performed as previously described[7].

Haplotype analysis
To determine the X-linked inheritance pattern and the implication of CHM, haplotype analysis
were performed using microsatellite markers flanking the CHM gene (DXS1002-DXS8076)
and three intragenic polymorphic markers (one single nucleotide polymorphism (SNP) in
exon 5, one variable number tandem repeat (VNTR) in intron 9 and one short tandem repeat
(STR) in intron 14). To determine whether several families shared a common ancestor, haplo-
types were generated by using two intragenic polymorphic markers (one SNP in exon 5 and
one STR in intron 14) and four additional microsatellite markers closely flanking the CHM
gene (TEL-DXS990-DXS1002-REP1-DXS8076-DXS986). Direct sequencing was performed
for the genotyping analysis of the SNP in exon 5. The rest of the markers used were separately
amplified. Each forward primer was fluorescence labelled and amplification products were sep-
arated by electrophoresis (ABI Prism 3130; Applied Biosystems) and analyzed with a software
package (GeneMapper v3.5; Applied Biosystems). For haplotype reconstruction, an informatics
program was utilized (Cyrillic ver. 2.1; Cyrllic Software, Wallingford, UK).

Next-Generation Sequencing (NGS)
For Whole Exome Sequencing (WES), genomic DNA, library and sequencing were performed
as previously described [8]. A custom NGS panel of 37 genes involved in retinal dystrophies,
including the CHM gene, was developed as follows: a total of 588 target regions (1,472
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amplicons) were entered into DesignStudio software (Illumina). Once the oligonucleotide
probes were synthesized, libraries were constructed and indexed by PCR using common prim-
ers from the TruSeq Amplicon Index Kit (Illumina). Finally, libraries were normalized and
pooled, prior to sequencing on a NextSeq500 system (Illumina).

Fibroblast cultures
Skin biopsies of patients carrying a deletion of the CHM gene, a UAA nonsense mutation and a
UGA nonsense mutation were performed following informed consent at the Centre of Refer-
ence for Genetic Sensory Disorders (CHRUMontpellier, France). The biopsy of the patient
carrying a deletion of exon 8 performed at the same centre was previously reported [9]. The
skin biopsy of the patient carrying a UAG nonsense mutation was performed at the IIS-Funda-
cion Jimenez Diaz (Madrid, Spain). The skin biopsies and emerging fibroblasts were cultured
in AmnioMAX C100 basal media with L-glutamine (Invitrogen, Life Technologies, Saint
Aubin, France) containing 10% decomplemented FCS (Lonza, Verviers, Belgium), 1% penicil-
lin-streptomycin-amphotericin B (Lonza) and 2% AmnioMax-C100 supplement (Invitrogen,
Life Technologies) at 37°C under 5% CO2 as described [9]. This work was performed under
the biomedical research authorization number 2014-A00549-38.

In vitro prenylation assay
At confluence, the patient’s fibroblasts cultured in a 6-well plate, were washed in cold PBS,
scraped in PBS containing antiproteases and pelleted at 3000g for 5 min. The pellet was resus-
pended in cold, freshly prepared degassed prenylation/lysis buffer and in vitro prenylation was
performed as described [9]. Western blot detection was performed using enhanced chemilumi-
nescence system ECL (Life Technologies). The amount of biotinylated Rab proteins was then
quantified by scanning densitometry using the software Image J and expressed as a function of
the β-actin signal. Experiments were performed in triplicate. Due to small sample sizes, 2x2
comparisons were performed using a non-parametric Mann-Whitney test.

Results
A total of 41 families with initial clinical diagnosis of CHM were included in our molecular
diagnostic pipeline. Four additional reclassified families were also studied. The study resulted
in the identification of 36 families with mutations in CHM, including 46 affected individuals.

CNV analysis
We identified three different families with gross deletions encompassing the entire CHM gene.
All of them were further delimited by aCGH. In two of the families (RP-0747 and RP-1226) a
novel 1.9 Mb deletion and a previously described 1.5 Mb deletion [6], were found at chromo-
some region arr [18] Xq21.2q21.31 (84692099–86623284) x0 and arr [18] Xq21.2q21.31
(84879062–86393588) x0, respectively, encompassing both the CHM and DACH2 genes. In the
other family, RP-1959, a firstly demarcated 455.6 kb deletion at chromosome region arr [19]
Xq21.2 (84847610–85303270) x0 exclusively encompassing the entire CHM gene was found.

In the majority of the cases, QF-PCR was the preferred technique when partial CHM dele-
tions were suspected. Ten families with different partial deletions involving the promoter
region and/or various exons were found (Fig 1 and Table 1). Among them, the deletion of exon
9 was the most common, being identified in four families (three Spanish families RP-1310, RP-
1560 and RP-2128 and a Portuguese family RP-0779). QF-PCR, in combination with MLPA,
was used in all of them. This combination of tools, in addition to confirming the presence of
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the deletion, helped to precisely delimit it. In all the cases, except in the RP-0779 family, the
deletion was delimited to exon 9 and the adjacent intronic region (less than 439 nucleotides, as
the exon 9 probe located at this position was present). In the RP-0779 family, we demarcated
by further aCGH a deletion of a minimum of 11,149 bp involving exon 9 and most of intron 9.
Two additional deletions were also delimited by aCHG. Deletion of exon 2 in the RP-0317 fam-
ily was demarcated leading to a genomic deletion of 1993 bp at chromosome region arr [18]
Xq21.2 (85168495–85170487) x0. A genomic deletion of 48.6kb, arr [19] Xq21.2 (85233612–
85282246) x0, encompassing both exon 3 and 4, was delimited in the RP-0918 family.

Mutational spectrum and molecular genetic testing
In families for which affected members were available for investigation, haplotype analysis was
performed to confirm the segregation of CHM with the disease. Following this approach, two
families were discarded for further CHMmolecular studies. For the remainder, direct sequenc-
ing of the exons and adjacent introns of the gene detected CHMmutations in 19 families, cor-
responding to a 49% detection rate. Specifically, we identified 3 different splicing mutations, 3
frameshift, 9 nonsense and one missense mutation. For the rest of the families, when direct
sequencing failed or was insufficient to accurately detect CHMmutations, alternative tech-
niques such as qF-PCR, sometimes in combination with MLPA, were used to detect copy num-
ber variations (CNVs). This strategy, resulting in a 33% detection rate, allowed us to
characterize 13 families and to identify 11 complete or partial deletions involving multiple or
single exons (Fig 1 and Table 1). However, when complete deletion of the gene was suspected,

Fig 1. Molecular strategy followed up for the diagnosis of CHM families.

doi:10.1371/journal.pone.0151943.g001
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Table 1. Mutational spectrum of CHM characterized families.

Mutation Effect Methods Origin Described/Novela n Relative frequency
(%)b

Translocation

46,X,t (X;4)(q21:p16) de novo translocation X;4 [t
X;4]

Karyotype+FISH Spain Described in our cohort
[7]

1 3

Genomic deletion

c.-29-*3450del1931185 Complete CHM and DACH2
deletion

qF-PCR+aCGH Spain This study 1 3

c.-29-*3450del1514526 Complete CHM and DACH2
deletion

qF-PCR+aCGH Spain Described in our cohort
[6]

1 3

c.-29-*3450del445660 Complete CHM deletion qF-PCR+aCGH Spain This study 1 3

c.-29-?_49+?del(no longer
24.4Kb)

Promoter to intron 1 deletion Direct sequencing
+ aCGH

Spain Firstly demarcated in this
study

1 3

c.-29-?_116+?del Promoter to exon 2 deletion Direct sequencing
+ aCGH

Spain Described 1 3

c.50-116del1992 Exon 2 deletion RNA studies+aCGH Spain Firstly demarcated in this
study

1 3

c.189+34_*3450+?del Exon 4 to exon 15 deletion qF-PCR+MLPA Spain Firstly demarcated in this
study

1 3

c.117-314del48634 Exon 3 and exon 4 deletion RNA studies+aCGH Spain Firstly demarcated in this
study

1 3

c.703-?_940+? Exon 6 and exon 7 deletion qF-PCR Unknown Described 1 3

c.1167-1244del11149 Exon 9 deletion qF-PCR+MLPA Portugal Firstly demarcated in this
study

1 3

c.1167-?_1244+?del Exon 9 deletion qF-PCR+MLPA Spain Described 3 9

Splicing

c.189+1G>A Exon 3 skipping Direct sequencing/NGS
panel

Spain Described 2 6

c.1167-1G>T Exon 9 skipping NGS panel Spain This study 1 3

c.1167-2A>G Exon 9 skipping Direct sequencing Spain This study 1 3

Frameshift

c.641_642delGA p.Arg214Asnfs*8 Direct sequencing Spain Described in our cohort
[6]

1 3

c.525_526delAG p.Lys178Argfs*5 Direct sequencing 1 Portugal; 1 Spain Described 2 6

c.862dupA p.Thr288Asnfs*19 WES Spain Described in our cohort
[6]

1 3

Nonsense

c.116C>A p.Ser39* Direct sequencing Spain Described 1 3

c.141G>A p.Trp47* Direct sequencing Spain Described 2 6

c.256C>T p.Gln76* Direct sequencing Spain Described 1 3

c.339T>G p.Tyr103* Direct sequencing Spain Described 1 3

c.745C>T p.Arg239* Direct sequencing Spain Described 1 3

c.877C>T p.Arg293* Direct sequencing 1 Portugal; 1 Poland;2
Spain

Described 4 12

c.1048C>A p.Ser340* Direct sequencing Spain Described in our cohort
[10]

1 3

c.1272_1273invTC p.Gln425* Direct sequencing Spain This study 1 3

c.1471G>T p.Glu491* Direct sequencing Spain Described 1 3

c.1703T>A p.Leu568* Direct sequencing Spain This study 1 3

Missense

c.49G>T p.Gly17Cys Direct sequencing Belgium This study 1 3

a Present on Human Gene Mutation Database (HGMD) or Locus specific database (LSDB).
b Calculated relative to 36 CHM families characterized in the laboratory.

doi:10.1371/journal.pone.0151943.t001
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as occurred in three of the families, aCGH was the technique of choice to accurately identify
the exact genomic region and the possible involvement of any adjacent gene. Four additional
families were clinically reclassified to CHM by additional studies. By karyotype analysis, a
translocation between chromosomes X and 4, disrupting CHM [7] was found in one family.
Next-Generation Sequencing allows to reclassified 3 additional families, one by WES [8] and
two families by resequencing RD gene panel (Fig 1 and Table 1). In some cases, RNA and
immunoblot analyses were used as a complementary strategy to predict the effect of the variant
in the mRNA or in the protein [6].

Complete or partial deletions of CHM, found in 13 families (36%) in total, as well as non-
sense (13 families; 36%), were the most frequent mutations identified in our cohort. Among
the deletions, exon 9 was the most recurrent one (3 families; 8%). From the families carrying
nonsense mutations, c.877C>T (p.Arg293�) was the most frequent one, having been found in
4 families (11%) from diverse origins: Spain, Portugal and Poland. The frameshift
c.525_526delAG (p.Lys178Argfs�5) mutation was found both in one Spanish and in one Portu-
guese family (Table 1). The nucleotide substitution c.49G>T, reported for the first time in this
study, was not present in our in-house exome variant database nor in any public database. It
was predicted to produce the substitution p.Gly17Cys, indicated as putatively pathogenic by
the SIFT, Poplyphen-2 and Mutation Taster softwares. However, since it is located in the last
nucleotide of exon 1, it could also affect the normal splicing of the CHM primary transcript.
Indeed, according to HSF tool, it decreases the score of the 5´splice site of intron 1 (from 86.34
to 75.47) possibly also by interfering with the recognition of splicing signals by U1snRNP.

Hot spots in CHM
Both common ancestors and mutational hotspots could be responsible for the presence of
recurrent mutations in unrelated individuals. To gain insights into this matter, we performed
the amplification of microsatellite markers, spanning over 13.6 cM between the DXS990 and
DXS986 markers and including two intragenic markers, in the affected members of the families
carrying recurrent mutations (Fig 2).

As mentioned, exon 9 deletion was found in three Spanish families (RP-1310, RP-1560 and
RP-2128). They did not report being related, but they were from geographically proximal
areas. Following haplotypes analysis, a founder effect for these families was suggested. How-
ever, for the Portuguese family RP-0779 carrying a larger deletion of exon 9, identity by descent
was discarded (Fig 2A).

Non-shared haplotypes were found in the affected members of families (RP-0884, RP-1171,
RP-1448 and RP-1546) carrying the c.877C>T (p.Arg293�) mutation, occurring at a CpG
dinucleotide. The same was true for the geographically unrelated families (RP-0022 and RP-
0962) carrying the c.525_526delAG (p.Lys178Argfs�5) mutation (Fig 2B and 2C).

Genotype-phenotype-genotype correlation
The summary of clinical and genetic data is presented in Table 2. Night blindness is one of the
early symptoms reported with a very wide range between individuals (18±12 years old). How-
ever, three of the patients presented with nyctalopia in the third or after the fourth decade of
life. Loss of peripheral visual field appeared mostly in the second decade of life. There was a
large range of variations in the visual acuity parameters between the affected individuals, even
between both eyes in the same individual, and therefore this parameter does not seem to repre-
sent a reliable feature of the disease. Electroretinogram was abolished in most of the patients
around their fourth decade of life. Subcapsular cataracts were only found in 2 out of 36 of the
families, indicating that they are not common signs in CHM.
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In our cohort of patients we could not find significant differences between the age of onset,
field constriction or loss of VA and the different types of mutations to be able to establish a
clear genotype-phenotype correlation. The only observation we noticed was that the group of
patients carrying complete deletion of the gene referred an early onset nyctalopia (9.6±4.7
years old), although this data are not statistically significant (p-value = 0.11). Moreover, no dif-
ferences in the phenotype were observed in the patients carrying deletions involving CHM,
solely or in conjunction with its adjacent gene DACH2, also indicating that this latter gene has
probably no role in CHM pathogenesis.

Functional assay
As there were no correlations at the clinical level, we tested the effect of different mutations at
the functional level by assaying whether Rab GTPase prenylation is affected differently

Fig 2. Haplotypes from families presenting the recurrentCHMmutations. Identified pedigrees carrying the exon 9 deletion (A), the p.Arg293* (B) and
the p.Lys178Argfs*5 (C)mutations are shown. For exon 9 deletion, haplotypes analysis demonstrated identity by descent in the Spanish families RP-1310,
RP-1560 and RP-2128 but independent origin for the Portuguese family RP-0779, defined by the alleles located along the black bar. For the p.Arg293* and
p.Lys178Argfs*5 mutations, haplotypes indicates an independent origin for both variants defined by the alleles located along the black bar.

doi:10.1371/journal.pone.0151943.g002
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Table 2. Clinical findings identified in affected individuals carryingmutations in theCHM gene.

Family Mutation Subject First
symptoms
and course

Age of
ophthalmic
evaluation

(y)

BVCA OD/
OS

Fundus aspect Visual Field ERG Additional
findings

RP-
0288

Translocation X;4
[t X;4]

Proband NB (5y), field
constriction

(23y) and loss
of VA (34y)

ND 0.5/0.5 Choroidal atrophy Loss of
peripheral VF
remaining

central island

Reduced Cataracts

RP-
1226

Complete CHM
and DACH2
deletion

Proband NB (3y) 5 0.8/0.8 Pigment clumping ND ND

Sibling NB (8y) 10 0.8/0.8 Pigment clumping Loss of
peripheral VF
remaining

central island

ND

Sibling NB (10y) 12 1/1 Pigment clumping Loss of
peripheral VF
remaining

central island

Reduced

RP-
0747

Complete CHM
and DACH2
deletion

Proband NB (11y), field
constriction

(11y)

ND 1/1 Peripheral choroidal
atrophy and focal
atrophy of the RPE

Loss of
peripheral VF
remaining

central island

Reduced

RP-
1959

Complete CHM
deletion

Proband NB (16y) ND 0.8/0.35 Choroidal atrophy and
pigment clumping

Loss of
peripheral VF

ND

RP-
1144

Promoter to intron
1 deletion

Proband NB (17y), field
constriction

(18y) and loss
of VA (50y)

63 0.3/0.1 Generalized choroideal
atrophy

Loss of
peripheral VF
remaining

central island
(>5°)

NR

Grandson NB (4y) 4 0.3/0.1 Pigment clumping NR

RP-
1276

Promoter to exon
2 deletion

Proband ND 37 >0.1/>0.1 Pigment clumping and
areas of

choriocapillaries loss

Loss of
peripheral VF
remaining

central island
(5°)

NR

RP-
0317

Exon 2 deletion Proband NB (23y), field
constriction

(23y) and loss
of VA (33y)

3 0.25/0.5 Peripheral choroidal
atrophy and focal
atrophy of the RPE

Absolute
scotoma

NR Macular oil spill
OD (33 y)

Sibling NB (21y), field
constriction

(26y) and loss
of VA (17y)

40 0.3/0.8 Generalized choroideal
atrophy. Pigment

clumping and areas of
choriocapillaries loss

Loss of
peripheral VF
remaining

central island

NR

RP-
0918

Exon 3 and exon
4 deletion

Proband NB (64y), field
constriction

(64y)

66 ND Peripheral choroidal
atrophy and focal
atrophy of the RPE

Affected
visual field

ND

RP-
2149

Exon 4 to exon
15 deletion

Proband NB (27y) ND 0.01/LP Generalized choroideal
atrophy. Pigment

clumping and areas of
choriocapillaries loss

ND Reduced
RE, NR

LE

RP-
1809

Exon 6 and exon
7 deletion

Proband ND ND ND ND ND NR

RP-
0779

Exon 9 deletion Proband ND ND ND ND ND ND

(Continued)
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Table 2. (Continued)

Family Mutation Subject First
symptoms
and course

Age of
ophthalmic
evaluation

(y)

BVCA OD/
OS

Fundus aspect Visual Field ERG Additional
findings

RP-
1310

Exon 9 deletion Proband NB (4y) ND 0.5/0.125 Pigment clumping and
areas of

choriocapillaries loss

Loss of
peripheral VF
remaining

central island
(5–10°)

Reduced

RP-
1560

Exon 9 deletion Proband NB (8y) ND ND ND Loss of
peripheral VF

ND

RP-
2128

Exon 9 deletion Proband NB (30y), field
constriction

(30y) and loss
of VA (30y)

ND 0.1/0.3 Diffuse choroidal
atrophy

Loss of
peripheral VF
remaining

central island
(10°)

ND

RP-
0022

p.Lys178Argfs*5 Proband NB (8y), field
constriction
(8y) and loss
of VA (14y)

43 0.1/0.1 Peripheral choroidal
atrophy and focal
atrophy of the RPE

Loss of
peripheral VF
remaining

central island

NR Myopia.
Hypoacusia

Cousin NB (26y), field
constriction

(26y) and loss
of VA (26y)

ND ND ND ND ND Hypermetropia

RP-
0962

p.Lys178Argfs*5 Proband ND ND ND ND ND ND

RP-
0889

p.Arg214Asnfs*8 Proband NB (28y), field
constriction

(28y)

28 0.8/CF ND Absolute
scotoma

NR

RP-
1164

p.
Thr288Asnfs*19

Proband NB (18y), field
constriction

(18y)

28 1/1 Peripheral choroidal
atrophy and focal
atrophy of the RPE

Loss of
peripheral VF
remaining

central island

Reduced

Sibling NB (28y), field
constriction

(28y)

28 ND ND ND ND

RP-
0729

c.189+1G>A Proband NB (26y), field
constriction

(28y) and loss
of VA (35y)

36 0.3/0.4 Pigment clumping with
macular atrophy

Loss of
peripheral VF
remaining

central island

NR

MD-
0495

c.189+1G>A Proband NB (25y), field
constriction

(24y) and loss
of VA

24 0.05/0.05 Atrophy of the RPE Loss of
peripheral VF

(>10°)

NR

RP-
1500

c.1168-2A>G Proband NB (10y), field
constriction

(20y) and loss
of VA (32y)

ND >0.1/>0.1 Peripheral choroidal
atrophy and focal

atrophy of the RPE with
subsequent exposure of

choroidal vessels.
Pigment clumping

Loss of
peripheral VF

ND

RP-
1995

c.1167-1G>T Proband NB (30y), field
constriction

(35y) and loss
of VA (31y)

30 Legal
blindness

Choroidal atrophy Absolute
scotoma
(RE); <10°

(OS)

ND

RP-
1224

p.Ser39* Proband NB (30y), field
constriction

(35y) and loss
of VA (35y)

ND 0.8/LP ND ND ND

(Continued)
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Table 2. (Continued)

Family Mutation Subject First
symptoms
and course

Age of
ophthalmic
evaluation

(y)

BVCA OD/
OS

Fundus aspect Visual Field ERG Additional
findings

RP-
2199

p.Trp47* Proband NB (19y), field
constriction

(33y) and loss
of VA (33y)

36 0.7/0.8 Peripheral choroidal
atrophy and focal
atrophy of the RPE

Loss of
peripheral VF
remaining

central island

NR

RP-
1098

p.Gln76* Proband NB (22y), field
constriction

(21y)

27 Amaurosis
(ptisis
bulbi)/1

Peripheral choroidal and
Bruch´s membrane
atrophy with pigment

clumping

Loss of
peripheral VF
remaining

central island

NR

RP-
0797

p.Tyr103* Proband NB (44y), field
constriction

(40y) and loss
of VA (44y)

46 0.4/CF Generalized choroidal
atrophy

Loss of
peripheral VF
remaining

central island

NR Epilepsy (42y)

RP-
0590

p.Arg239* Proband NB (16y), field
constriction

(27y)

27 1/1 Pigment clumping and
areas of

choriocapillaries loss

Loss of
peripheral VF
remaining

central island
(10°)

NR

Sibling NB (6y), field
constriction

(18y)

19 0.6/0.7 Pigment clumping and
areas of

choriocapillaries loss

Loss of
peripheral VF
remaining

central island
(5°)

NR Cataracts

Sibling NB (16y), field
constriction

(20y)

28 1/1 Pigment clumping and
areas of

choriocapillaries loss

Loss of
peripheral VF
remaining

central island
(5°)

NR

RP-
0884

p.Arg293* Proband ND 27 ND ND ND ND

RP-
1171

p.Arg293* Proband NB (8y), field
constriction

(26y) and loss
of VA (15y)

ND 0.6/0.6 ND Loss of
peripheral VF

NR

RP-
1448

p.Arg293* Proband NB (8y), field
constriction

(15y) and loss
of VA (30y)

39 ND Peripheral choroidal
atrophy and focal
atrophy of the RPE

Loss of
peripheral VF

NR

RP-
1546

p.Arg293* Proband NB (13y), field
constriction

(23y) and loss
of VA (23y)

ND ND ND ND NR

RP-
0023

p.Ser340* Proband NB (7y), field
constriction

(17y) and loss
of VA (7y)

44 CF/HM Pigment clumping with
macular atrophy

Loss of
peripheral VF

NR

Uncle Loss of VA
(52y)

ND 0.8/0.9 Peripheral choroidal
atrophy and pigment

clumping

Loss of
peripheral VF
remaining

central island

ND

RP-
0411

p.Gln425* Proband NB (20y), field
constriction

(24y) and loss
of VA (20y)

ND 0.1/0.1 Peripheral choroidal
atrophy

Loss of
peripheral VF
remaining

central island
(10–15°)

NR

(Continued)
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depending on the type of CHMmutation. To this end, we measured the levels of unprenylated
Rabs in the fibroblasts of 6 patients carrying different classes of CHMmutations (deletion of
the whole gene, nonsense mutations or deletion of a single exon). There was no REP-1 protein
detectable in any of the patients’ fibroblasts (data not shown). Consistently, all of the patients’
fibroblasts presented significantly increased levels of unprenylated Rabs compared to control
cells (ranging from 4- to 10-fold higher, p<0.05). There were also significant differences in lev-
els between the patients however this was not related to the genotype as the highest levels were
present in one of the patients carrying a whole deletion of the gene and in a patient carrying a
UAA nonsense mutation in exon 6 (Fig 3). In contrast, the unprenylated Rab levels were lower
(2-fold on average) in the patients carrying the two other nonsense mutations (UGA in exon
14 and UAG in exon 4). Interestingly, we noted that the two siblings carrying a whole CHM
deletion (family RP-1226) presented significantly different levels of unprenylated Rabs
(2.5-fold, p<0.05).

Discussion
Choroideremia is a very genetically heterogeneous disease in which different types of muta-
tions are reported. In this study, we evaluated 41 families initially clinically diagnosed with
CHM and 4 additional families re-diagnosed as CHM. We characterized 36 families in total
and identified 28 different mutations. Most of the families (31%, 22/36) carried hemizygous
nucleotide substitutions, corresponding mostly to nonsense mutations (36%, 13/36), although
splicing mutations (11%, 4/36), frameshift (11%, 4/36) and missense (3%, 1/36) variants were
also identified. The remainder of the families (13/36) carried genomic deletions involving com-
plete or partial deletion of the gene. As an exceptional case, a previously described de novo
translocation, [7], was also found (Table 1).

The molecular diagnostic pipeline used in this report resulted in an effective method for the
identification of CHM defects in different populations. In addition, our data supports the idea
of an underestimated prevalence of the disease. Some cases were initially incorrectly diagnosed,
due to the similarity of symptoms with other retinal dystrophies, but further characterized as

Table 2. (Continued)

Family Mutation Subject First
symptoms
and course

Age of
ophthalmic
evaluation

(y)

BVCA OD/
OS

Fundus aspect Visual Field ERG Additional
findings

Sibling ND ND 1/1 Peripheral choroidal
atrophy

Loss of
peripheral VF
remaining

central island
(20–30°)

NR

RP-
1508

p.Glu491* Proband ND ND ND ND ND ND

RP-
2342

p. Leu568* Proband NB (7y), field
constriction

(27y) and loss
of VA (38y)

7 0.05/0.4 Optic pallor, choroidal
atrophy, thin retinal

vessels.

Affected
visual field

NR

RP-
1495

p.Gly17Cys Proband ND ND ND ND ND ND

BCVA: best corrected visual acuity; OD: right eye; OS: left eye; ERG: electroretinogram; NB: night blindness; VA: visual acuity; VF: visual field; ND: no

data; NR: non recordable; RPE: retinal pigmented epithelium; CF: counting fingers; LP: light perception; HM: hand motion

doi:10.1371/journal.pone.0151943.t002
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CHM by NGS, consistent with previous reports [11] (Fig 1). Moreover, cases of genomic rear-
rangements, such as the translocation event, and deep intronic mutations that can occur in
CHM [7, 12, 13], failed to be detected by conventional techniques. As shown here, NGS, both
in the form of re-sequencing gene panels and WES, was successful for the identification patho-
genic CHM variants. However, to date large deletions or duplications and genomic rearrange-
ments cannot always be effectively identified by this technology [14]. Thus, currently we
propose this approach as a first step, when the patient displays a clear CHM phenotype, fol-
lowed by the study of genomic rearrangements in those negative cases. In addition, NGS is also

Fig 3. Prenylation status of different CHMmutations. A) A representative in vitro prenylation assay using a biotinylated prenyl donor followed by western
blot analysis. A weaker signal of incorporated biotin can be seen for the wild-type (WT) control as compared to the patients’ cells.B) Semi-quantification of
the pool of biotinylated Rabs (ranging in size from 20 to 29 kDa) after normalization of β-actin loading. The levels in control cells were set to 1. The
unprenylated Rab levels were significantly higher than wild-type (black bar) in all the patients’ cells regardless of the type of mutation (p<0.05, asterisks;
n = 3). In addition, the Rab levels were significantly different between two brothers carrying the same large deletion (dark grey bars) of the CHM gene
(p<0.05, asterisk; n = 3).

doi:10.1371/journal.pone.0151943.g003
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a very good approach for identifying novel CHM cases amongst previous incorrectly diagnosed
cases, thus raising disease prevalence.

To date, a small number of missense mutations were identified in CHM. Interestingly, the
novel c.46G>T variant presumably leads to the missense p.Gly17Cys substitution. However, it
is located in the last nucleotide of exon 1, and therefore could probably affect splicing, as is the
case for other CHM variants located in exonic sequence [15]. Further studies would be neces-
sary to assess mRNA transcripts resulting from these alleles.

Following haplotype reconstruction, we showed that the recurrent p.Arg293� and p.
Lys178Argfs�5 mutations had independent origins in different carriers, therefore suggesting
the presence of mutational hotspot in CHM. This is particularly true for the p.Arg293� muta-
tion located in exon 7, identified in four independent and unrelated families. This mutation is
C to T transition, occurring at a CpG dinucleotide, a well-known trigger of mutations in the
human genome [16],[17]. Moreover changing an arginine residue to a stop codon seems to be
a very common mutational mechanism in CHM, as described previously [13]. Deletion of exon
9 was found in three Spanish families sharing common haplotype, therefore suggesting a com-
mon ancestor. However, no identity by descent was observed in a Portuguese family carrying
an additional and larger deletion involving also exon 9.

In our cohort we identified large rearrangements involving a translocation or complete dele-
tions of CHM, as well as a wide range of out-of-frame partial deletions, nonsense and frame-
shift mutations. In all cases, these mutations, with the exception of the final exon-junction,
presumably lead to the premature truncation of CHMmRNA. As exceptional cases, we have
previously identified three different in-frame deletions (exon 2, exon 3 and 4, and exon 9 dele-
tions) [6], with protein production detected. In these latter cases, the deletion involves a con-
served protein domain implicated in the interaction with Rab proteins, crucial for the function
of the REP-1 protein. As a result, due to REP-1 being completely absent, truncated or contain-
ing a dysfunctional domain, no functional protein is produced.

We cannot establish a reliable genotype-phenotype correlation in our cohort of patients, as
has been widely reported for other cohorts [18]. Furthermore, we did not observe a correlation
between the unprenylated Rab levels, measured in CHM patients´ fibroblasts, and their geno-
type as patients carrying the same mutation (a complete deletion of CHM) exhibited signifi-
cantly different levels of unprenylated Rabs. Although these two siblings have a two-year age
difference and thus it cannot be ruled out that unprenylated Rabs may accumulate over time
leading to higher levels in the older sibling, these data further suggest that severity and progres-
sion of the disease may not be solely explained by the specific CHMmutation. The causes of
underprenylation due to defects in the Rab prenylation machinery are complex and likely mul-
tifactorial [19]. However, it is known that REP2 can partially compensate a REP1 deficiency.
Thus, a first area of investigation could be the analysis of REP2 levels to determine whether
lower unprenylated Rab levels in some patients could be correlated with higher REP2 levels. A
more complete study of prenylation status versus phenotype, as a factor of age, would be
needed to determine whether unprenylated Rab levels could aid disease prognosis.

To conclude, this study identified six novel CHMmutations. Clinical history and the identi-
fication of molecular defects in CHM are not only important for current diagnostics and
genetic counseling, but also for prenatal diagnosis and preimplantation genetic diagnosis. In
addition, it is particularly relevant for guiding patient selection to be included in the outcome
treatments.
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