6 research outputs found

    Gekoppelte Kern- und Elektronendynamik: Molekulare Systeme und deren Kontrolle durch die Bewegung der Elektronen

    Get PDF
    Die Steuerung von photochemischen Reaktionen durch die gezielte Kontrolle von elektronischen Wellenpaketen mit ultrakurzen Pulsen im Femtosekunden- oder Attosekundenbereich ist Gegenstand von zahlreichen theoretischen und experimentellen Forschungsprojekten. Im ersten Teil dieser Dissertation werden drei molekulare Reaktionen theoretisch untersucht, die durch die gezielte Steuerung der Elektronendynamik kontrolliert werden. Die zeitliche Entwicklung dieser Systeme wird mit einem Ansatz zur Berechnung einer gekoppelten Kern- und Elektronendynamik beschrieben. Die Elektronenlokalisierung in den dissoziativen Ionisation der Modellsysteme D2 und CO wird durch die absolute Phase des Laserfeldes (Phase zwischen Trägerfrequenz und Einhüllenden) gesteuert. Ein Vergleich der beiden Mechanismen zeigt wesentliche Unterschiede zwischen dem homonuklearen Molekül D2 und dem heteronuklearen Molekül CO. Diese Unterschiede treten sowohl in der Präparation des elektronischen Wellenpaketes und in der Rolle der absoluten Phase des Laserfeldes in der Kontrolle, als auch im Stopp der induzierten Dynamik Elektronenbewegung zu Tage. Durch die selektive Population von lichtbekleideten Zuständen, die durch die relative Phase zweier Pulse in einer Pulssequenz gesteuert wird, lassen sich im Kalium-Dimer zwei unterschiedliche, elektronisch angeregte Zustände kontrolliert besetzen. Diese dritte Reaktion wird zunächst mit einer Doppelpulssequenz implementiert und die Effizienz durch Variation der beiden Parameter Verzögerungszeit zwischen den beiden Subpulsen und Intensität des zweiten Hauptpulses optimiert. Für beide Zustände wurde eine maximale Effizienz von 66% erreicht. Eine Verlängerung der Verzögerungszeit zwischen den beiden Subpulsen führt zu einer signifikanten Abnahme der Effizienz. Eine Analyse dieses Effekts zeigt, dass dieser Verlust der Kontrolleffizienz durch die Kopplung zwischen Kern-- und Elektronendynamik verursacht wird. OCT-Optimierungen an diesem System führen zu einer erheblichen Steigerung der Kontrolleffizienz und erlauben den Rückschluss, dass dieser Starkfeld-Mechanismus im OCT-Suchraum liegt und somit robust und effizient ist. Aufbauend auf diesen Untersuchungen werden die Faktoren identifiziert, welche ausschlaggebend für das optimale Zeitfenster der Kontrolle der Elektronendynamik sind. Mit diesen Erkenntnissen wird eine neue Kontrollstrategie für Photoreaktionen, die über konische Durchschneidungen verlaufen, entwickelt. Das vorgeschlagene Reaktionsschema wird an einem Modellsystem mit experimentell realisierbaren Pulsen getestet. Die kontrollierbaren Populationsverhältnisse bewegen sich in den Grenzen zwischen 24:76 und 74:26%. Im zweiten Teil dieser Dissertation werden theoretische Methoden zur Beschreibung der Starkfeld-Ionisationen von Molekülen neu entwickelt bzw. existierende Methoden modifiziert. Die Starkfeld-Ionisation ist in vielen Experimenten der erste Teilschritt, auf dem alle folgenden aufbauen. Daher ist eine exakte Berechnung dieses Prozesses für eine genaue Beschreibung der Experimente ausschlaggebend. Der Fokus der Untersuchungen liegt vor allem auf der Winkelabhängigkeit des Ionisationsprozesses und auf dem Ionisationszeitpunkt. Für die Berechnung der winkelabhängigen Ionisationswahrscheinlichkeiten wird ein neu entwickelter, quantenmechanischer Ansatz vorgestellt und an der dissoziativen Ionisation der Moleküle D2, N2, O2 und CO getestet. Für die Berechnung des Ionisationszeitpunktes wird der Monte-Carlo-Wellenpaket-Ansatz verwendet und für die Beschreibung zweiatomiger Moleküle verallgemeinert. Sowohl die ursprüngliche Methode als auch die Erweiterung werden an der Doppelionisation des H2-Moleküls als Modellsystem getestet

    Searching for pathways involving dressed states in optimal control theory

    Get PDF
    Selective population of dressed states has been proposed as an alternative control pathway in molecular reaction dynamics [Wollenhaupt et al., J. Photochem. Photobiol. A: Chem., 2006, 180, 248]. In this article we investigate if, and under which conditions, this strong field pathway is included in the search space of optimal control theory. For our calculations we used the proposed example of the potassium dimer, in which the different target states can be reached via dressed states by resonant transition. Especially, we investigate whether the optimization algorithm is able to find the route involving the dressed states although the target state lies out of resonance in the bare state picture

    Waveform control of orientation-dependent ionization of DCl in few-cycle laser fields

    Get PDF
    Strong few-cycle light fields with stable electric field waveforms allow controlling electrons on time scales down to the attosecond domain. We have studied the dissociative ionization of randomly oriented DCl in 5 fs light fields at 720 nm in the tunneling regime. Momentum distributions of D+ and Cl+ fragments were recorded via velocity-map imaging. A waveformdependent anti-correlated directional emission of D+ and Cl+ fragments is observed. Comparison of our results with calculations indicates that tailoring of the light field via the carrier envelope phase permits the control over the orientation of DCl+ and in turn the directional emission of charged fragments upon the breakup of the molecular ion

    Optimal control theory - closing the gap between theory and experiment

    Get PDF
    Optimal control theory and optimal control experiments are state-of-the-art tools to control quantum systems. Both methods have been demonstrated successfully for numerous applications in molecular physics, chemistry and biology. Modulated light pulses could be realized, driving these various control processes. Next to the control efficiency, a key issue is the understanding of the control mechanism. An obvious way is to seek support from theory. However, the underlying search strategies in theory and experiment towards the optimal laser field differ. While the optimal control theory operates in the time domain, optimal control experiments optimize the laser fields in the frequency domain. This also implies that both search procedures experience a different bias and follow different pathways on the search landscape. In this perspective we review our recent developments in optimal control theory and their applications. Especially, we focus on approaches, which close the gap between theory and experiment. To this extent we followed two ways. One uses sophisticated optimization algorithms, which enhance the capabilities of optimal control experiments. The other is to extend and modify the optimal control theory formalism in order to mimic the experimental conditions

    Die Haut

    No full text

    Survey of the year 2003 commercial optical biosensor literature

    No full text
    corecore