3,017 research outputs found

    Spacecraft Attitude Stabilization with Piecewise-constant Magnetic Dipole Moment

    Full text link
    In actual implementations of magnetic control laws for spacecraft attitude stabilization, the time in which Earth magnetic field is measured must be separated from the time in which magnetic dipole moment is generated. The latter separation translates into the constraint of being able to genere only piecewise-constant magnetic dipole moment. In this work we present attitude stabilization laws using only magnetic actuators that take into account of the latter aspect. Both a state feedback and an output feedback are presented, and it is shown that the proposed design allows for a systematic selection of the sampling period.Comment: arXiv admin note: text overlap with arXiv:1411.275

    A Luenberger-style Observer for Robot Manipulators with Position Measurements

    Full text link
    This paper presents a novel Luenberger-style observer for robot manipulators with position measurements. Under the assumption that the state evolutions that are to be observed have bounded velocities, it is shown that the origin of the observation error dynamics is globally exponentially stable and that the corresponding convergence rate can be made arbitrarily high by increasing a gain of the observer. Comparisons and relations between the proposed observer and existing observers are discussed. The effectiveness of the result here presented is illustrated by a simulation of the observer for the Pendubot, an underactuated two-joint manipulator.Comment: 6 pages, 2 figure

    Global and robust attitude control of a launch vehicle in exoatmospheric flight

    Get PDF
    The goal of this research is to design global and robust attitude control systems for launch vehicles in exoatmospheric flight. An attitude control system is global when it guarantees that the vehicle converges to the desired attitude regardless of its initial condition. Global controllers are important because when large angle maneuvers must be performed, it is simpler to use a single global controller than several local controllers patched together. In addition, the designed autopilots must be robust with respect to uncertainties in the parameters of the vehicle, which means that global convergence must be achieved despite of those uncertainties. Two designs are carried out. In the first one possible delays introduced by the actuator are neglected. The design is performed by using a Lyapunov approach, and the obtained autopilot is a standard proportional-derivative controller. In the second one, the effects of the actuator are considered. Then the design is based on robust backstepping which leads to a memory-less nonlinear feedback of attitude, attitude-rate, and of the engine deflection angle. Both autopilots are validated in a case study

    Going forth and back in time: a fast and parsimonious algorithm for mixed initial/final-value problems

    Full text link
    We present an efficient and parsimonious algorithm to solve mixed initial/final-value problems. The algorithm optimally limits the memory storage and the computational time requirements: with respect to a simple forward integration, the cost factor is only logarithmic in the number of time-steps. As an example, we discuss the solution of the final-value problem for a Fokker-Planck equation whose drift velocity solves a different initial-value problem -- a relevant issue in the context of turbulent scalar transport.Comment: 12 pages, 4 figure

    Lunar Ascent and Orbit Injection via Neighboring Optimal Guidance and Constrained Attitude Control

    Get PDF
    Future human or robotic missions to the Moon will require efficient ascent path and accurate orbit injection maneuvers, because the dynamical conditions at injection affect the subsequent phases of spaceflight. This research focuses on the original combination of two techniques applied to lunar ascent modules, i.e., (1) the recently introduced variable-time-domain neighboring optimal guidance (VTD-NOG), and (2) a constrained proportional-derivative (CPD) attitude control algorithm. VTD-NOG belongs to the class of feedback implicit guidance approaches aimed at finding the corrective control actions capable of maintaining the spacecraft sufficiently close to the reference trajectory. CPD pursues the desired attitude using thrust vector control while constraining the rate of the thrust deflection angle. The numerical results unequivocally demonstrate that the joint use of VTD-NOG and CPD represents an accurate and effective methodology for guidance and control of lunar ascent path and orbit injection in the presence of nonnominal flight conditions

    A robust optimization approach for magnetic spacecraft attitude stabilization

    Get PDF
    Attitude stabilization of spacecraft using magnetorquers can be achieved by a proportional–derivative-like control algorithm. The gains of this algorithm are usually determined by using a trial-and-error approach within the large search space of the possible values of the gains. However, when finding the gains in this manner, only a small portion of the search space is actually explored. We propose here an innovative and systematic approach for finding the gains: they should be those that minimize the settling time of the attitude error. However, the settling time depends also on initial conditions. Consequently, gains that minimize the settling time for specific initial conditions cannot guarantee the minimum settling time under different initial conditions. Initial conditions are not known in advance. We overcome this obstacle by formulating a min–max problem whose solution provides robust gains, which are gains that minimize the settling time under the worst initial conditions, thus producing good average behavior. An additional difficulty is that the settling time cannot be expressed in analytical form as a function of gains and initial conditions. Hence, our approach uses some derivative-free optimization algorithms as building blocks. These algorithms work without the need to write the objective function analytically: they only need to compute it at a number of points. Results obtained in a case study are very promising
    • …
    corecore