291 research outputs found

    Teosinte Inflorescence Phytolith Assemblages Mirror Zea Taxonomy

    Get PDF
    Molecular DNA analyses of the New World grass (Poaceae) genus Zea, comprising five species, has resolved taxonomic issues including the most likely teosinte progenitor (Zea mays ssp. parviglumis) of maize (Zea mays ssp. mays). However, archaeologically, little is known about the use of teosinte by humans both prior to and after the domestication of maize. One potential line of evidence to explore these relationships is opaline phytoliths produced in teosinte fruit cases. Here we use multidimensional scaling and multiple discriminant analyses to determine if rondel phytolith assemblages from teosinte fruitcases reflect teosinte taxonomy. Our results indicate that rondel phytolith assemblages from the various taxa, including subspecies, can be statistically discriminated. This indicates that it will be possible to investigate the archaeological histories of teosinte use pending the recovery of appropriate samples

    Study of CP violation in Dalitz-plot analyses of B0 --> K+K-KS, B+ --> K+K-K+, and B+ --> KSKSK+

    Get PDF
    We perform amplitude analyses of the decays B0K+KKS0B^0 \to K^+K^-K^0_S, B+K+KK+B^+ \rightarrow K^+K^-K^+, and B+KS0KS0K+B^+ \to K^0_S K^0_S K^+, and measure CP-violating parameters and partial branching fractions. The results are based on a data sample of approximately 470×106470\times 10^6 BBˉB\bar{B} decays, collected with the BABAR detector at the PEP-II asymmetric-energy BB factory at the SLAC National Accelerator Laboratory. For B+K+KK+B^+ \to K^+K^-K^+, we find a direct CP asymmetry in B+ϕ(1020)K+B^+ \to \phi(1020)K^+ of ACP=(12.8±4.4±1.3)A_{CP}= (12.8\pm 4.4 \pm 1.3)%, which differs from zero by 2.8σ2.8 \sigma. For B0K+KKS0B^0 \to K^+K^-K^0_S, we measure the CP-violating phase βeff(ϕ(1020)KS0)=(21±6±2)\beta_{\rm eff} (\phi(1020)K^0_S) = (21\pm 6 \pm 2)^\circ. For B+KS0KS0K+B^+ \to K^0_S K^0_S K^+, we measure an overall direct CP asymmetry of ACP=(45+4±2)A_{CP} = (4 ^{+4}_{-5} \pm 2)%. We also perform an angular-moment analysis of the three channels, and determine that the fX(1500)f_X(1500) state can be described well by the sum of the resonances f0(1500)f_0(1500), f2(1525)f_2^{\prime}(1525), and f0(1710)f_0(1710).Comment: 35 pages, 68 postscript figures. v3 - minor modifications to agree with published versio

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    General Anesthetics Inhibit Erythropoietin Induction under Hypoxic Conditions in the Mouse Brain

    Get PDF
    Background: Erythropoietin (EPO), originally identified as a hematopoietic growth factor produced in the kidney and fetal liver, is also endogenously expressed in the central nervous system (CNS). EPO in the CNS, mainly produced in astrocytes, is induced under hypoxic conditions in a hypoxia-inducible factor (HIF)-dependent manner and plays a dominant role in neuroprotection and neurogenesis. We investigated the effect of general anesthetics on EPO expression in the mouse brain and primary cultured astrocytes. Methodology/Principal Findings: BALB/c mice were exposed to 10 % oxygen with isoflurane at various concentrations (0.10–1.0%). Expression of EPO mRNA in the brain was studied, and the effects of sevoflurane, halothane, nitrous oxide, pentobarbital, ketamine, and propofol were investigated. In addition, expression of HIF-2a protein was studied by immunoblotting. Hypoxia-induced EPO mRNA expression in the brain was significantly suppressed by isoflurane in a concentration-dependent manner. A similar effect was confirmed for all other general anesthetics. Hypoxia-inducible expression of HIF-2a protein was also significantly suppressed with isoflurane. In the experiments using primary cultured astrocytes, isoflurane, pentobarbital, and ketamine suppressed hypoxia-inducible expression of HIF-2a protein and EPO mRNA. Conclusions/Significance: Taken together, our results indicate that general anesthetics suppress activation of HIF-2 an

    Pooled extracellular receptor-ligand interaction screening using CRISPR activation.

    Get PDF
    Extracellular interactions between cell surface receptors are necessary for signaling and adhesion but identifying them remains technically challenging. We describe a cell-based genome-wide approach employing CRISPR activation to identify receptors for a defined ligand. We show receptors for high-affinity antibodies and low-affinity ligands can be unambiguously identified when used in pools or as individual binding probes. We apply this technique to identify ligands for the adhesion G-protein-coupled receptors and show that the Nogo myelin-associated inhibitory proteins are ligands for ADGRB1. This method will enable extracellular receptor-ligand identification on a genome-wide scale

    Intensification of Antiretroviral Therapy with a CCR5 Antagonist in Patients with Chronic HIV-1 Infection: Effect on T Cells Latently Infected

    Get PDF
    Objective: The primary objective was to assess the effect of MVC intensification on latently infected CD4+ T cells in chronically HIV-1-infected patients receiving antiretroviral therapy. Methods: We performed an open-label pilot phase II clinical trial involving chronically HIV-1-infected patients receiving stable antiretroviral therapy whose regimen was intensified with 48 weeks of maraviroc therapy. We analyzed the latent reservoir, the residual viremia and episomal 2LTR DNA to examine the relationship between these measures and the HIV-1 latent reservoir, immune activation, lymphocyte subsets (including effector and central memory T cells), and markers associated with bacterial translocation. Results: Overall a non significant reduction in the size of the latent reservoir was found (p = 0.068). A mean reduction of 1.82 IUPM was observed in 4 patients with detectable latent reservoir at baseline after 48 weeks of intensification. No effect on plasma residual viremia was observed. Unexpectedly, all the patients had detectable 2LTR DNA circles at week 24, while none of them showed those circles at the end of the study. No changes were detected in CD4+ or CD8+ counts, although a significant decrease was found in the proportion of HLA-DR+/CD38+ CD4+ and CD8+ T-cells. LPS and sCD14 levels increased. Conclusions: Intensification with MVC was associated with a trend to a decrease in the size of the latent HIV-1 reservoir in memory T cells. No impact on residual viremia was detected. Additional studies with larger samples are needed to confirm the results

    A Research Agenda for Helminth Diseases of Humans: Diagnostics for Control and Elimination Programmes

    Get PDF
    Diagnostic tools appropriate for undertaking interventions to control helminth infections are key to their success. Many diagnostic tests for helminth infection have unsatisfactory performance characteristics and are not well suited for use in the parasite control programmes that are being increasingly implemented. Although the application of modern laboratory research techniques to improve diagnostics for helminth infection has resulted in some technical advances, uptake has not been uniform. Frequently, pilot or proof of concept studies of promising diagnostic technologies have not been followed by much needed product development, and in many settings diagnosis continues to rely on insensitive and unsatisfactory parasitological or serodiagnostic techniques. In contrast, PCR-based xenomonitoring of arthropod vectors, and use of parasite recombinant proteins as reagents for serodiagnostic tests, have resulted in critical advances in the control of specific helminth parasites. The Disease Reference Group on Helminths Infections (DRG4), established in 2009 by the Special Programme for Research and Training in Tropical Diseases (TDR) was given the mandate to review helminthiases research and identify research priorities and gaps. In this review, the diagnostic technologies relevant to control of helminth infections, either available or in development, are reviewed. Critical gaps are identified and opportunities to improve needed technologies are discussed

    Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Get PDF
    Efficient processing of information by the central nervous system (CNS) represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB), which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF) from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs) that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC) transport proteins at those two barriers and underlines differences in their expression between the two barriers. Also, many blood-borne molecules and xenobiotics can diffuse into brain ISF and then into neuronal membranes due to their physicochemical properties. Entry of these compounds could be detrimental for neural transmission and signalling. Thus, BBB and BCSFB express transport proteins that actively restrict entry of lipophilic and amphipathic substances from blood and/or remove those molecules from the brain extracellular fluids. The third part of this review concentrates on the molecular biology of ATP-binding cassette (ABC)-transporters and those SLC transporters that are involved in efflux transport of xenobiotics, their expression at the BBB and BCSFB and differences in expression in the two major blood-brain interfaces. In addition, transport and diffusion of ions by the BBB and CP epithelium are involved in the formation of fluid, the ISF and CSF, respectively, so the last part of this review discusses molecular biology of ion transporters/exchangers and ion channels in the brain endothelial and CP epithelial cells

    Genome Sequence of the Pea Aphid Acyrthosiphon pisum

    Get PDF
    Aphids are important agricultural pests and also biological models for studies of insect-plant interactions, symbiosis, virus vectoring, and the developmental causes of extreme phenotypic plasticity. Here we present the 464 Mb draft genome assembly of the pea aphid Acyrthosiphon pisum. This first published whole genome sequence of a basal hemimetabolous insect provides an outgroup to the multiple published genomes of holometabolous insects. Pea aphids are host-plant specialists, they can reproduce both sexually and asexually, and they have coevolved with an obligate bacterial symbiont. Here we highlight findings from whole genome analysis that may be related to these unusual biological features. These findings include discovery of extensive gene duplication in more than 2000 gene families as well as loss of evolutionarily conserved genes. Gene family expansions relative to other published genomes include genes involved in chromatin modification, miRNA synthesis, and sugar transport. Gene losses include genes central to the IMD immune pathway, selenoprotein utilization, purine salvage, and the entire urea cycle. The pea aphid genome reveals that only a limited number of genes have been acquired from bacteria; thus the reduced gene count of Buchnera does not reflect gene transfer to the host genome. The inventory of metabolic genes in the pea aphid genome suggests that there is extensive metabolite exchange between the aphid and Buchnera, including sharing of amino acid biosynthesis between the aphid and Buchnera. The pea aphid genome provides a foundation for post-genomic studies of fundamental biological questions and applied agricultural problems
    corecore