43 research outputs found

    Genetic Variants on Chromosome 1p13.3 Are Associated with Non-ST Elevation Myocardial Infarction and the Expression of DRAM2 in the Finnish Population

    Get PDF
    Myocardial infarction (MI) is divided into either ST elevation MI (STEMI) or non-ST elevation MI (NSTEMI), differing in a number of clinical characteristics. We sought to identify genetic variants conferring risk to NSTEMI or STEMI by conducting a genome-wide association study (GWAS) of MI stratified into NSTEMI and STEMI in a consecutive sample of 1,579 acute MI cases with 1,576 controls. Subsequently, we followed the results in an independent population-based sample of 562 cases and 566 controls, a partially independent prospective cohort (N = 16,627 with 163 incident NSTEMI cases), and examined the effect of disease-associated variants on gene expression in 513 healthy participants. Genetic variants on chromosome 1p13.3 near the damage-regulated autophagy modulator 2 gene DRAM2 associated with NSTEMI (rs656843; odds ratio 1.57, P = 3.11 x 10(-10)) in the case-control analysis with a consistent but not statistically significant effect in the prospective cohort (rs656843; hazard ratio 1.13, P = 0.43). These variants were not associated with STEMI (rs656843; odds ratio, 1.11, P = 0.20; hazard ratio 0.97, P = 0.87), appearing to have a pronounced effect on NSTEMI risk. A majority of the variants at 1p13.3 associated with NSTEMI were also associated with the expression level of DRAM2 in blood leukocytes of healthy controls (top-ranked variant rs325927, P = 1.50 x 10(-12)). The results suggest that genetic factors may in part influence whether coronary artery disease results in NSTEMI rather than STEMI.Peer reviewe

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    Формирование эмоциональной культуры как компонента инновационной культуры студентов

    Get PDF
    Homozygosity has long been associated with rare, often devastating, Mendelian disorders1 and Darwin was one of the first to recognise that inbreeding reduces evolutionary fitness2. However, the effect of the more distant parental relatedness common in modern human populations is less well understood. Genomic data now allow us to investigate the effects of homozygosity on traits of public health importance by observing contiguous homozygous segments (runs of homozygosity, ROH), which are inferred to be homozygous along their complete length. Given the low levels of genome-wide homozygosity prevalent in most human populations, information is required on very large numbers of people to provide sufficient power3,4. Here we use ROH to study 16 health-related quantitative traits in 354,224 individuals from 102 cohorts and find statistically significant associations between summed runs of homozygosity (SROH) and four complex traits: height, forced expiratory lung volume in 1 second (FEV1), general cognitive ability (g) and educational attainment (nominal p<1 × 10−300, 2.1 × 10−6, 2.5 × 10−10, 1.8 × 10−10). In each case increased homozygosity was associated with decreased trait value, equivalent to the offspring of first cousins being 1.2 cm shorter and having 10 months less education. Similar effect sizes were found across four continental groups and populations with different degrees of genome-wide homozygosity, providing convincing evidence for the first time that homozygosity, rather than confounding, directly contributes to phenotypic variance. Contrary to earlier reports in substantially smaller samples5,6, no evidence was seen of an influence of genome-wide homozygosity on blood pressure and low density lipoprotein (LDL) cholesterol, or ten other cardio-metabolic traits. Since directional dominance is predicted for traits under directional evolutionary selection7, this study provides evidence that increased stature and cognitive function have been positively selected in human evolution, whereas many important risk factors for late-onset complex diseases may not have been

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    Get PDF
    Peer reviewe

    Global Warming May Depress Avian Population Fecundity by Selecting Against Early-Breeding, High-Quality Individuals in Northern Populations of Single-Brooded, Long-Lived Species

    Get PDF
    Global climate is changing at an unprecedented rate. Adjustments to breeding phenology represent responses to current climate change, and some climatic effects have negatively affected population reproductive performances. Here we simulated the possibility that climate warming-induced changes in the timing of egg-laying may modify the phenotype composition (i.e. proportion of high- vs. low-quality phenotypes) of avian populations of single-brooded, long-lived species in northern countries (where asymmetric changes of weather conditions are more pronounced), therefore affecting the internal structure and long-term stability of populations. In northern countries, prelaying temperatures have risen and laying and hatching are expected to occur earlier. However, because post-hatching temperatures have remained stable, early chicks hatch under conditions of low temperature and great precipitation, and may face increased mortality. Because early breeders are generally high-quality individuals, their contribution to the future recruitment of the breeding population will decrease, engendering a doubly negative effect: (1) the number of offspring in a population will be lower than in the past because of higher mortality in the largest broods; and (2) the population will increasingly be composed of the offspring of low-quality individuals, which will consequently decrease fitness of the entire populationPeer reviewe

    Vastaus nisäkkäiden nimistä.

    No full text

    Fatal Puumala Hantavirus Disease : Involvement of Complement Activation and Vascular Leakage in the Pathobiology

    Get PDF
    The case-fatality rate of hantavirus disease depends strongly on the causative hantavirus, ranging from 0.1% to 40%. However, the pathogenesis is not fully understood, and at present no licensed therapies exist. We describe fatal cases caused by Puumala hantavirus indicating involvement of complement activation and vascular leakage.Peer reviewe
    corecore