
RESEARCH ARTICLE

Genetic Variants on Chromosome 1p13.3 Are
Associated with Non-ST Elevation Myocardial
Infarction and the Expression of DRAM2 in
the Finnish Population
Perttu P. Salo1,2,3*, Satu Vaara4, Johannes Kettunen1,2, Matti Pirinen2, Antti-Pekka Sarin2,
Heikki Huikuri5, Pekka J. Karhunen6,7, Markku Eskola8, Kjell Nikus8, Marja-Liisa Lokki9,
Samuli Ripatti2, Aki S. Havulinna10, Veikko Salomaa10, Aarno Palotie2,11,12, Markku
S. Nieminen4, Juha Sinisalo4, Markus Perola1,2,13

1 Genomics and Biomarkers Unit, Department of Health, National Institute for Health andWelfare, Helsinki,
Finland, 2 Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland,
3 Children's Hospital, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland,
4 Division of Cardiology, Heart and Lung Center HUS, Helsinki University Central Hospital, Helsinki, Finland,
5 Institute of Clinical Medicine, Department of Internal Medicine, University Central Hospital and University of
Oulu, Oulu, Finland, 6 School of Medicine, University of Tampere, Tampere, Finland, 7 Fimlab Laboratories
Ltd, Tampere University Hospital Region, Tampere, Finland, 8 Heart Center, Tampere University Hospital
and University of Tampere, School of Medicine, Tampere, Finland, 9 Transplantation Laboratory, Haartman
Institute, University of Helsinki, Helsinki, Finland, 10 Health Monitoring Unit, Department of Health, National
Institute for Health and Welfare, Helsinki, Finland, 11 Wellcome Trust Sanger Institute, Hinxton, Cambridge,
United Kingdom, 12 Broad Institute, Cambridge, MA, United States of America, 13 The Estonian Genome
Center of the University of Tartu, Tartu, Estonia

* perttu.salo@thl.fi

Abstract
Myocardial infarction (MI) is divided into either ST elevation MI (STEMI) or non-ST elevation

MI (NSTEMI), differing in a number of clinical characteristics. We sought to identify genetic

variants conferring risk to NSTEMI or STEMI by conducting a genome-wide association

study (GWAS) of MI stratified into NSTEMI and STEMI in a consecutive sample of 1,579

acute MI cases with 1,576 controls. Subsequently, we followed the results in an indepen-

dent population-based sample of 562 cases and 566 controls, a partially independent pro-

spective cohort (N = 16,627 with 163 incident NSTEMI cases), and examined the effect of

disease-associated variants on gene expression in 513 healthy participants. Genetic vari-

ants on chromosome 1p13.3 near the damage-regulated autophagy modulator 2 gene

DRAM2 associated with NSTEMI (rs656843; odds ratio 1.57, P = 3.11 × 10−10) in the case-

control analysis with a consistent but not statistically significant effect in the prospective

cohort (rs656843; hazard ratio 1.13, P = 0.43). These variants were not associated with

STEMI (rs656843; odds ratio, 1.11, P = 0.20; hazard ratio 0.97, P = 0.87), appearing to

have a pronounced effect on NSTEMI risk. A majority of the variants at 1p13.3 associated

with NSTEMI were also associated with the expression level of DRAM2 in blood leukocytes

of healthy controls (top-ranked variant rs325927, P = 1.50 × 10−12). The results suggest that
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genetic factors may in part influence whether coronary artery disease results in NSTEMI

rather than STEMI.

Introduction
Myocardial infarction (MI) is diagnosed as either ST elevation MI (STEMI) or non-ST eleva-
tion MI (NSTEMI) based on specific electrocardiogram (ECG) patterns [1]. In most cases
STEMI results from complete occlusion of a coronary artery [2] whereas NSTEMI is caused by
partial or transient blockage [3]. In either case, prolonged ischemia ultimately leads to cell
death. Both differences and similarities in prognoses for NSTEMI and STEMI have been
reported, depending on follow-up time and study sample. [4, 5] Despite improvements in treat-
ment, ischemic heart disease remains the most common cause of death world-wide [6].

STEMI and NSTEMI differ in a number of clinically relevant characteristics. Compared to
STEMI, NSTEMI tends to present with greater minimal luminal area in the culprit artery,
smaller length of plaque rupture [7], and smaller infarct size [8]. The ruptured plaques are also
found to be somewhat smaller and more heavily calcified in NSTEMI [9]. Interestingly, recur-
rent infarctions are often of the same type, suggesting that some individuals may be particularly
susceptible to either STEMI or NSTEMI [10]. Although MI is moderately heritable [11] and a
significant number of coronary artery disease (CAD) or MI risk loci have been identified [12],
the possible differences in genetic risk factors between STEMI and NSTEMI have been virtually
unexplored.

To identify genetic variants conferring susceptibility to STEMI or NSTEMI, we conducted a
genome-wide association study (GWAS) of MI with stratification into NSTEMI and STEMI.
We followed the results in a case-control sample and a prospective cohort. Finally, we exam-
ined the correlation of the disease-associated variants with gene expression levels in blood leu-
kocytes in a sample of healthy individuals. All participants of this study were Finns.

Results

Discovery GWAS
The characteristics of the discovery sample are presented in Table 1. Fig 1 and Table 2 summa-
rize the GWAS P-values for MI, STEMI and NSTEMI. We detected a novel genome-wide sig-
nificant association on chromosome 1p13.3 for NSTEMI with two directly genotyped and 14
imputed variants passing the pre-specified significance threshold of P< 5 × 10−8. The
most statistically significant directly genotyped variant was rs656843 with P = 1.22 × 10−8

(odds ratio [OR] for the minor allele, 1.63 [95% CI 1.38 to 1.93]) and the most significantly
associated imputed variant was rs2764553 (OR for the minor allele, 1.62 [95% CI 1.24 to 1.63];
P = 1.63 × 10−9). None of the SNPs reached genome-wide significance when testing for associa-
tion with STEMI or all MI cases. We did not observe inflation in the test statistics and the
genome-wide inflation factors for the directly genotyped SNPs were close to 1 for each of the
phenotypes we tested (λMI = 1.03, λSTEMI = 1.03, λNSTEMI = 1.02).

The variants at 1p13.3 associated with NSTEMI are located within an LD block approxi-
mately 240 kbp in size, containing the genes DRAM2, CEPT1 and the 3' end of DENND2D
(Fig 2). Rs1335645 between CEPT1 and DENND2D has previously been reported to associate
with plasma gammaglutamyltransferase (GGT) levels [13]. Furthermore, rs599839 1.9 Mbp
upstream of rs656843 near PSRC1 and SORT1 has been reported to be associated with both
blood low-density lipoprotein cholesterol (LDL-C) levels and risk for CAD [14]. We thus tested
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rs656843 for association with GGT and LDL-C in 1,575 samples used as controls in the
discovery sample but found no association (PGGT = 0.11; PLDL-C = 0.22; data not shown).

Table 1. Sample characteristics.

Sample Stratum N Males Age (years) BMI (kg/m2) Diabetes Current smoking

Discovery All MI 1,579a 1,102 (69.8) 65.6 ± 11.9 26.9 ± 6.6 345 (21.8)1 517 (32.7)15

STEMI 614 451 (73.5) 63.0 ± 12.0 26.7 ± 6.7 97 (15.8) 252 (41.5)7

NSTEMI 962 649 (67.5) 67.2 ± 11.6 27.0 ± 6.5 248 (25.8)1 264 (27.7)8

Controls 1,576 915 (58.1) 57.5 ± 11.0 26.9 ± 5.3 117 (7.4) 382 (24.2)

Replication I All MI 562 340 (60.5) 69.9 ± 11.6 na. 132 (23.5)8 102 (18.1)11

STEMI 173 112 (64.7) 66.6 ± 12.3 na. 31 (17.9)1 41 (23.7)3

NSTEMI 389 228 (58.6) 71.4 ± 11.0 na. 101 (30.0)7 61 (15.7)8

Controls 566 275 (48.6) 49.5 ± 12.9 26.9 ± 4.5 41 (7.2) 106 (18.7)

Replication II All MI 484b 348 (71.9) 65.81 ± 9.69 28.72 ± 4.35 82 (16.94) 170 (35.12)

STEMI 99 78 (78.79) 62.32 ± 10.25 29.27 ± 3.941 17 (17.17) 39 (39.39)

NSTEMI 163 111 (68.1) 67.05 ± 9.11 28.33 ± 4.21 31 (19.02) 51 (31.29)

Controls 16,143 8,904 (45.8) 58.46 ± 12.80 26.57 ± 4.6945 916 (5.67) 4,006 (24.82)

a Includes 3 MI cases with unspecified ST-segment status
b Includes 222 MI cases with unspecified ST-segment status

Mean ± standard deviation is shown for continuous variables and number (%) for categorical variables. The number of patients with missing information is

shown in upper index.

BMI, body mass index;

MI, myocardial infarction;

STEMI, ST elevation myocardial infarction;

NSTEMI, non-ST elevation myocardial infarction;

na. not available

doi:10.1371/journal.pone.0140576.t001

Fig 1. Summary of the genome-wide association results comparing healthy controls with only NSTEMI, only STEMI, or all acute MI cases. Variants
reaching the genome-wide significance threshold P < 5 × 10−8, marked with the dashed line, are shown in red.

doi:10.1371/journal.pone.0140576.g001

Genetic Variants and NSTEMI

PLOS ONE | DOI:10.1371/journal.pone.0140576 October 28, 2015 3 / 16



Table 2. Summary of the genome-wide significant association results on chromosome 1p13.3.

Variant Position Alleles a MAF Controls MAF NSTEMI OR NSTEMI P NSTEMI MAF STEMI OR STEMI P STEMI MAF All MI OR All MI P All MI

rs685377i 111687613 T/G 0.20 0.26 1.53
(1.21–
1.58)

4.32 × 10−8 0.21 1.12
(0.91–
1.26)

0.20 0.24 1.31
(1.11–
1.42)

5.50 × 10−5

rs613915i 111691009 A/C 0.20 0.26 1.57
(1.23–
1.62)

9.29 × 10−9 0.20 1.09
(0.88–
1.23)

0.32 0.23 1.31
(1.12–
1.42)

4.45 × 10−5

rs586995 111692440 G/A 0.20 0.26 1.53
(1.31–
1.79)

4.91 × 10−8 0.21 1.12
(0.95–
1.33)

0.19 0.24 1.31
(1.15–
1.49)

5.11 × 10−5

rs1093472i 111696753 G/T 0.20 0.26 1.54
(1.21–
1.58)

4.25 × 10−8 0.21 1.12
(0.91–
1.26)

0.20 0.24 1.31
(1.11–
1.42)

5.46 × 10−5

rs591100i 111697305 G/A 0.20 0.26 1.54
(1.21–
1.58)

4.24 × 10−8 0.21 1.12
(0.91–
1.26)

0.20 0.24 1.31
(1.11–
1.42)

5.46 × 10−5

rs669758i 111699202 A/C 0.20 0.26 1.54
(1.21–
1.58)

4.21 × 10−8 0.21 1.12
(0.91–
1.26)

0.20 0.24 1.31
(1.11–
1.42)

5.44 × 10−5

rs680025i 111704797 C/G 0.20 0.26 1.54
(1.21–
1.59)

4.11 × 10−8 0.21 1.12
(0.91–
1.26)

0.20 0.24 1.31
(1.11–
1.42)

5.39 × 10−5

rs679407i 111704923 G/C 0.20 0.26 1.54
(1.21–
1.59)

4.11 × 10−8 0.21 1.12
(0.91–
1.26)

0.20 0.24 1.31
(1.11–
1.42)

5.39 × 10−5

rs11440587i 111707225 A/AT 0.20 0.26 1.54
(1.21–
1.58)

4.05 × 10−8 0.21 1.12
(0.91–
1.26)

0.20 0.24 1.31
(1.12–
1.42)

5.16 × 10−5

rs629006i 111714400 G/A 0.20 0.26 1.54
(1.21–
1.59)

3.88 × 10−8 0.21 1.12
(0.91–
1.26)

0.20 0.24 1.31
(1.12–
1.42)

5.28 × 10−5

rs675874i 111720775 G/T 0.20 0.26 1.54
(1.22–
1.59)

3.02 × 10−8 0.21 1.12
(0.91–
1.26)

0.21 0.24 1.31
(1.12–
1.42)

4.98 × 10−5

rs641379i 111728285 T/C 0.20 0.26 1.54
(1.22–
1.59)

2.71 × 10−8 0.21 1.12
(0.91–
1.25)

0.21 0.24 1.31
(1.12–
1.42)

4.83 × 10−5

rs2764553i 111732303 C/A 0.19 0.25 1.62
(1.24–
1.63)

1.63 × 10−9 0.20 1.11
(0.89–
1.24)

0.27 0.23 1.33
(1.12–
1.43)

2.11 × 10−5

rs2484459i 111734126 G/C 0.15 0.21 1.66
(1.26–
1.69)

5.99 × 10−9 0.16 1.07
(0.86–
1.24)

0.48 0.19 1.33
(1.13–
1.47)

9.48 × 10−5

rs656843 111736672 G/A 0.15 0.21 1.63
(1.38–
1.93)

1.22 × 10−8 0.16 1.07
(0.88–
1.29)

0.50 0.19 1.33
(1.15–
1.54)

1.27 × 10−4

rs142769559i 111737998 G/
GAAGC

0.16 0.22 1.59
(1.24–
1.65)

3.90 × 10−8 0.17 1.12 (0.9–
1.27)

0.25 0.20 1.33
(1.13–
1.46)

6.77 × 10−5

a Major/minor
i Imputed variant

MAF, minor allele frequency;

OR, odds ratio;

MI, myocardial infarction;

STEMI, ST elevation myocardial infarction;

NSTEMI, non-ST elevation myocardial infarction

Statistical significance tested using logistic regression setting age, sex, and the first ten genomic principal components as covariates. The 95% confidence

interval is reported in parentheses for the OR estimates.

doi:10.1371/journal.pone.0140576.t002
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Fig 2. Association of genetic variants with the MI phenotypes and the LD structure at 1p13.3 (GRCh37 Chromosome 1:111,397,480–111,863,701).
The P-values for both imputed and genotyped variants are depicted, while the LD is calculated from the genotyped SNPs only. Known genes from the
RefSeq database are shown together with potential regulatory regions marked by histone 3 lysine 27 acetylation (Layered H3K27Ac) and DNase I
hypersensitivity clusters from the Encode consortium.

doi:10.1371/journal.pone.0140576.g002
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Additionally, we calculated the correlation between rs656843 and these SNPs from the imputed
data to confirm its independence of these two previously reported SNPs (r2< 0.05).

Replication and meta-analysis
We selected the most statistically significant directly genotyped SNP rs656843 for replication.
Characteristics of the replication samples are presented in Table 1 and the results of the associ-
ation tests in Table 3. We combined the results from the case-control samples in both fixed-
and random-effects meta-analysis using directly genotyped data. We did not observe signifi-
cant heterogeneity (I2< 0.10) and report the values obtained from the fixed-effects meta-
analysis.

First we tested rs656843 for association with the MI phenotypes in the replication sample I.
Similar to the discovery sample, rs656843 was associated with NSTEMI (389 cases, 566 con-
trols; OR for the minor allele, 1.44 [95% CI 1.12 to 1.86]; P = 0.0049) but not with STEMI (173
cases, 566 controls; OR 1.27 [95% CI 0.91–1.77]; P = 0.16). When comparing all MI cases with
controls in the replication sample I the association of rs656843 was also statistically significant
(562 cases, 566 controls; OR 1.38 [95% CI 1.10 to 1.74]; P = 0.0062).

Next we combined the results of the GWAS and the replication sample I to get a summary
of the association of rs656843 with MI across the case-control data. The overall most signifi-
cant association was with NSTEMI when we combined both discovery and replication samples
using meta-analysis (OR 1.57 [95% CI 1.36–1.81]; P = 3.11 × 10−10). Rs656843 was not associ-
ated with STEMI in the meta-analysis of the discovery and replication samples (OR 1.11 [95%
CI 0.94–1.31]; P = 0.20). Accordingly, the association of rs656843 with unspecified MI did not

Table 3. Association P-values and effect-size estimates for rs656843 in the discovery and replication samples.

Sample MAF Unaffected MAF NSTEMI OR NSTEMI P NSTEMI MAF STEMI OR STEMI P STEMI MAF All MI OR All MI P All MI

Discoverya 0.15 (1,576) 0.21 (962) 1.63 (1.38–
1.93)

1.22 × 10−8 0.16 (614) 1.07 (0.88–
1.29)

0.50 0.19
(1,579)

1.33 (1.15–
1.54)

1.27 × 10−4

Replication Ib 0.14 (566) 0.19 (389) 1.44 (1.12–
1.86)

0.0049 0.17 (173) 1.27 (0.91–
1.77)

0.16 0.18 (562) 1.38 (1.10–
1.74)

0.0062

Case-control
combinedc

0.15 (2,142) 0.20
(1,351)

1.57 (1.36–
1.81)

3.11 × 10−10 0.16 (787) 1.11 (0.94–
1.31)

0.20 0.19
(2,141)

1.34 (1.19–
1.52)

2.58 × 10−6

Replication IId 0.17 (16,143) 0.18 (163) 1.13e (0.84–
1.51)

0.43 0.16 (99) 0.97e (0.65–
1.43)

0.87 0.16 (484) 1.00e (0.84–
1.19)

0.98

a,b Case-control sample
c Discovery and replication sample I combined using meta-analysis
d Prospective sample
e Hazard ratio

MAF, minor allele frequency;

OR, odds ratio;

MI, myocardial infarction;

STEMI, ST elevation myocardial infarction;

NSTEMI, non-ST elevation myocardial infarction;

na., not applicable

Case-control samples analyzed using logistic regression including age, sex, and the first ten genomic principal components (the discovery sample) or no

covariates (Replication sample I) in the model. Replication sample II analyzed using the Cox proportional hazards model stratified by study year,

geographical region, and genotyping batch with gender, systolic blood pressure, blood pressure medication, total cholesterol, HDL-cholesterol, smoking

and diabetes used as covariates. Sample sizes (for the MAFs) and 95% confidence intervals (for the OR/hazard ratio estimates) are reported in

parentheses.

doi:10.1371/journal.pone.0140576.t003
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reach genome-wide significance when the two case-control samples were analyzed together
(OR 1.34 [95% CI 1.19–1.52]; P = 2.58 × 10−6).

To complement the results from the case-control cohorts, we tested rs656843 for association
with MI, NSTEMI, and STEMI in the prospective replication sample II. The association of
rs656843 with NSTEMI, STEMI or MI was not statistically significant, although the estimate of
the hazard ratio for NSTEMI (HR 1.13 [95% CI 0.84–1.51]) was consistent with the two case-
control samples in direction of association. To assess the statistical power of the prospective
sample, we tested 50 published MI/CAD risk SNPs present in our data for association with
incident MI or NSTEMI. Depending on the phenotype tested, either 9 (MI) or 2 (NSTEMI) of
the SNPs replicated at P< 0.05 (data not shown, SNPs listed in Table A in S1 File).

As both the discovery and replication samples consisted of Finns, we next wanted to study
the association of rs656843 with MI or relevant traits in non-Finnish populations. Two large
publicly available GWAS meta-analyses by the CARDIoGRAM [15] and C4D [16] consortia
had tested the association of rs656843 with CAD in multiple populations. The CARDIoGRAM
meta-analysis covered 16,693 cases and 55,947 controls from 22 European cohorts. In C4D, the
meta-analysis combined results from two European and two South-Asian cohorts containing
altogether 15,379 cases and 15,026 controls. Rs656843 was not associated with risk for CAD in
either of the two meta-analyses.

The association of rs656843 was statistically significant for NSTEMI and not for STEMI in
the discovery and replication I samples, suggesting the risk conferred by rs656843 may not be
equal for these two alternative subtypes of MI. To formally address this difference in associa-
tion, we calculated posterior probabilities for statistical models where rs656843 provided either
no risk whatsoever, the same risk for NSTEMI and STEMI, a related but attenuated risk for
STEMI, or risk only for NSTEMI. Assuming a uniform prior, the model with the effect specific
to NSTEMI had the highest posterior probability (0.71) followed by the model with a related
but attenuated effect for STEMI (posterior probability = 0.29). The null model with no effect
(posterior probability = 3.10 × 10−8) and the model with the same effect for both NSTEMI and
STEMI (posterior probability = 0.0013) were the least favored by the data.

Association with gene expression
The variants associated (P< 0.05) with NSTEMI at the 1p13.3 locus are not predicted by the
Ensembl VEP to change the structure of a protein (Ensembl Variant Effect Predictor, database
version 81.37).[17] The causal variant(s) may therefore act by altering gene expression, change
the nucleotide sequence of a noncoding RNA molecule or not be among the variants tested for
association. As we had used a dense imputation reference and the region does not harbor con-
served noncoding RNA genes, we considered the first option to be likely.

To identify cis regulatory effects, we tested the variants at the 1p13.3 locus for association
with DRAM2 and CETP1 expression levels (no expression probes were available for
DENND2D). The results of these tests are summarized in Table 4 and Fig 3. We detected a
strong association with DRAM2 expression level in blood leukocytes (expression probe
ILMN_1808634; the most statistically significant variant rs325927, P = 1.50 × 10−12) and,
after conditioning on the top SNP, a weaker secondary association signal (rs11102218,
P = 6.70 × 10−4). The association of SNPs at 1p13.3 with NSTEMI overlaps both the primary
and secondary association signals for DRAM2 expression. However, rs656843 was not associ-
ated with DRAM2 expression in either of the models. Furthermore, for the primary signal,
NSTEMI risk-increasing alleles were associated with higher DRAM2 expression, while the
opposite was true for the SNPs constituting the secondary signal. Finally, we tested rs656843
genome-wide for association with all of the probes contained on the expression array in order

Genetic Variants and NSTEMI

PLOS ONE | DOI:10.1371/journal.pone.0140576 October 28, 2015 7 / 16



to identify possible trans effects. None of the tests were statistically significant when corrected
for the number of probes in either chromosome 1 alone or for all probes genome-wide.

Table 4. Association of SNPs withDRAM2 expression and NSTEMI. Results are shown for the most statistically significant imputed and directly geno-
typed variants for each of the three phenotypes tested (DRAM2 expression, DRAM2 expression conditioned for rs325927, and NSTEMI).

Phenotype Lead
variant

Alleles a beta DRAM2 P DRAM beta DRAM2 conditioned P DRAM2 conditioned OR NSTEMI P NSTEMI

DRAM2 rs325927i C/T 0.080 (0.059–
0.102)

1.50 × 10−12 na. na. 1.221 (1.065–
1.4)

0.00421

DRAM2 rs657801 T/C 0.079 (0.057–
0.100)

3.08 × 10−12 0.033 (-0.028–0.094) 0.291 1.223 (1.066–
1.404)

0.00397

DRAM2
conditioned

rs11102218i G/A 0.078 (0.056–
0.101)

2.43 × 10−11 0.047 (0.02–0.073) 6.70 × 10−4 0.874 (0.766–
0.996)

0.0428

DRAM2
conditioned

rs947633 A/G -0.019 (-0.052–
0.013)

0.237 -0.05 (-0.081–0.018) 0.00199 1.255 (1.033–
1.526)

0.0223

NSTEMI rs2764553i A/C 0.009 (-0.018–
0.036)

0.509 -0.036 (-0.064–
0.008)

0.0116 1.622 (1.386–
1.898)

1.63 × 10−9

NSTEMI rs656843 C/T 0.025 (-0.004–
0.054)

0.932 -0.016 (-0.046–
0.014)

0.288 1.647 (1.39–
1.951)

8.25 × 10−9

a Effect/other
i Imputed variant;

DRAM2, damage-regulated autophagy modulator 2;

NSTEMI, non-ST elevation myocardial infarction;

OR, odds ratio;

CI, confidence interval;

na., not applicable

Statistical significance tested using logistic regression including age, sex, and the first ten genomic principal components (NSTEMI) or no covariates

(DRAM2 expression) in the model. For consistency, all statistics reported for the imputed dataset.

doi:10.1371/journal.pone.0140576.t004

Fig 3. Association of genetic variants at 1p13.3 withDRAM2 expression and NSTEMI. P-values for association with DRAM2 expression are presented
both for the basic model (left-hand side) and the model conditioned for rs325927 (right-hand side). The white dashed lines are drawn at P = 0.05 and divide
the areas into quadrants. The variants are colored based on the quadrant they fall into under the unconditioned analysis model.

doi:10.1371/journal.pone.0140576.g003
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Several of the variants associated with both NSTEMI and DRAM2 expression in cis are pre-
dicted by the Ensembl VEP to have potential regulatory effects. Rs644081 is located at a splice
junction of a non-canonical non-coding DRAM2 transcript (ENST00000477769) and multiple
SNPs reside within predicted regulatory regions. None of the variants affect 3' untranslated
regions, suggesting the detected regulatory effects are probably not driven e.g. by miRNA bind-
ing. Strong linkage disequilibrium at the locus, however, makes it difficult to rank any of the
potentially functional variants as the top candidate.

Association of previously reported CAD/MI risk loci with NSTEMI and
STEMI
Our GWAS data included 50 SNPs previously reported as associated with either unstratified
MI, CAD or coronary heart disease (CHD) at P< 5 × 10−8 [18]. For 16 of these we replicated
the association with MI at the nominal significance level of P< 0.05 (Table A in S1 File). These
16 SNPs included 5 near CDKN2A/CDKN2B on chromosome 9p21, the first and most widely
replicated GWAS finding for MI [19]. At this locus we replicated the association with a nearly
identical effect size estimate (OR for the minor allele of rs10757278, 1.28 [95% CI 1.15–1.43];
P = 1.25 × 10−5) as compared to the originally reported association with early-onset MI (OR
for the rs10757278 minor allele, 1.28 [95% CI 1.22 to 1.35]). None of the 50 SNPs showed sta-
tistically significant differences in allele frequencies between STEMI and NSTEMI patients
after adjusting for the number of tests (X2 test P> 0.001). 3 SNPs were nominally significant
with the most statistically significant difference observed for rs514659 in the ABO gene deter-
mining the ABO blood group (frequency of the minor allele C in STEMI patients 48.06% and
in NSTEMI patients 43.26%; X2 P = 0.0066), originally reported to be specifically associated
with MI in presence of CAD [20].

Discussion
We conducted a GWAS of acute MI, NSTEMI and STEMI followed by replication in both
case-control and prospective settings. We identified a novel genome-wide significant associa-
tion between SNPs on chromosome 1p13.3 and risk for NSTEMI. The association of the
top directly genotyped SNP rs656843 with NSTEMI and unspecified MI replicated in the inde-
pendent case-control sample. Similar to most already published GWAS CAD/MI loci, the effect
of rs656843 was consistent in direction but did not reach statistical significance for MI or
NSTEMI in the prospective sample. The contrast between the case-control and prospective
analysis results may stem from the different case ascertainment methods and sample sizes. The
case-control replication sample was collected by a single study center and contained 389
NSTEMI cases, whereas the 163 incident NSTEMI cases in the prospective replication sample
were identified from hospital discharge registries, diagnosed during routine clinical work in
multiple hospitals. The case-control sample thus benefitted from both a larger number of cases
and potentially more uniform diagnostic criteria. The association of rs656843 with STEMI was
not statistically significant in any of the samples we studied. The data from the three study sam-
ples thus suggest rs656843 is associated with NSTEMI but not with STEMI.

The difference in association of rs656843 with NSTEMI and STEMI could in principle be
explained simply by the different sample sizes and a corresponding lack of statistical power to
detect an association with STEMI, given that the samples contained more NSTEMI than
STEMI cases. To address this, we compared the posterior probabilities of four candidate mod-
els using an approach that properly accounts for the different amounts of information available
for STEMI and NSTEMI. The comparison suggests the data are best explained by a model
where rs656843 increases risk for NSTEMI only. A model with a related but attenuated effect
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on STEMI risk also provides a good fit, while a model where the effect of rs656843 on NSTEMI
and STEMI risk was set equal fits the data poorly. The observed data thus support the interpre-
tation that the effect of the 1p13.3 locus on MI risk is not the same for NSTEMI and STEMI
and that the difference in association is not caused solely by different sample sizes.

Rs656843 was not associated with risk for CAD in two large international GWAS meta-
analyses, one conducted in European and the other in South-Asian and European cohorts.
Although these meta-analyses of CAD are not a direct replication of an association detected
using NSTEMI as the endpoint, a considerable proportion of the CAD cases in both meta-anal-
yses had been diagnosed with MI. Given the large sample sizes, it seems unlikely that pheno-
typic differences alone would explain the lack of association between rs656843 and CAD in the
meta-analyses. The association detected in the present study may therefore depend on a genetic
or environmental factor sufficiently common in Finland but rare in other European
populations.

Genetic variants associated with NSTEMI on chromosome 1p13.3 are located within a
240 kbp long LD block. The region contains three genes, DRAM2, CETP1 and DENND2D, all
of which could potentially be causal. Variants associated with NSTEMI are associated with the
expression of DRAM2 and not with CEPT1, pointing towards DRAM2 as causal. It must,
however, be noted that the association of SNPs with NSTEMI is not exactly mirrored by their
association with DRAM2 expression. As expression quantitative trait loci are known to be ubiq-
uitous across the genome [21], it is possible that the overlap between the NSTEMI and DRAM2
associations is coincidental rather than causal.

The exact function of DRAM2 remains to be elucidated, but it has been shown to be highly
expressed in heart and to play a role in autophagy, the main cellular mechanism for recycling
and degradation of organelles and long-lived proteins [22]. Silencing DRAM2 inhibits autop-
hagy under starvation [23] and attenuates p53-mediated cell death [24], although DRAM2 is
not directly regulated by p53 [25]. Autophagy is particularly important for postmitotic cells
such as cardiomyocytes and induced in response to both intra- and extracellular stress condi-
tions [26]. Depending on the context, it can either promote cell survival or contribute to cell
death. Autophagy has also been suggested to affect myocardial sensitivity to ischemia-reperfu-
sion injury [27], potentially connecting DRAM2 function and a mechanism of cardiac damage.
Further studies in e.g. myocardium are, however, required to show whether DRAM2 can influ-
ence cardiac function.

We did not observe statistically significant differences between STEMI and NSTEMI
patients for SNPs previously reported to be associated with MI, CAD or CHD at genome-wide
significant level (Table A in S1 File). As most of the previously reported SNPs have been identi-
fied as associated with CAD and not specifically with MI, this implies that genetic variants
affecting mechanisms relevant prior to plaque rupture, principally the development of CAD,
confer similar risk for both NSTEMI and STEMI. Genetic differences between the two could
mainly have to do with the acute response to plaque rupture and coronary artery occlusion.
Interestingly, the most statistically significant difference between STEMI and NSTEMI patients
for a previously reported SNP was at the ABO gene, originally identified as associated with risk
for MI in presence of CAD [20]. This is particularly intriguing because the ABO locus is also
the only genome-wide significant finding associated specifically with risk for MI independently
of CAD.

Several limitations of the current study must be noted. First, as all of the study participants
were Finns, the findings may not be directly applicable to other ethnic groups. Second, the sam-
ple sizes were moderately small, implying that the effect-size estimates of the novel findings
may be inflated. This view is supported by the lack of statistically significant association of
rs656843 with NSTEMI in the prospective setting. Although limited by the modest number of
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incident cases studied, the prospective setting gives a valuable realistic indication of the limited
predictive value of rs656843 for incident MI or NSTEMI. Third, the controls in the replication
sample I were on average approximately 20 years younger than the cases, resulting in loss of
statistical power as some of the controls will likely suffer fromMI in the future. Fourth, we
used easily accessible blood leukocytes to study the correlation between DNA sequence variants
and gene expression instead of potentially more relevant cell types such as cardiomyocytes or
arterial endothelial cells.

The association of specific genetic variants preferentially with NSTEMI implies that whether
an individual will get one form of acute MI rather than the other may partly be genetically
influenced. This suggests future studies on the genetic basis of myocardial infarction could ben-
efit from making the distinction between STEMI and NSTEMI. These two MI subtypes appear
to share a majority of their genetic risk factors, but the differences may offer unique insights
into the processes leading from coronary artery disease to myocardial injury.

Materials and Methods

Study cohorts
The MI cases of the discovery sample comprise all successfully genotyped Corogene study par-
ticipants suffering from a spontaneous myocardial infarction related to ischaemia due to a pri-
mary coronary event (type 1 MI):[1, 28] either STEMI (N = 614), NSTEMI (N = 962), or MI
with usnpecified ST-segment status (N = 3). Participants of the Corogene study were recruited
from all consecutive patients assigned for coronary angiography at the Helsinki University
Central Hospital between July 2006 and March 2008. 91.2% of the patients gave informed con-
sent and were included in the Corogene study, described in detail elsewhere.[29] We defined
ACS as an episode of typical acute chest pain and at least 50% stenosis in one or more coronary
arteries. We further classified the patients as having UAP, NSTEMI or STEMI according to
ischaemic ECG changes and elevated levels of cardiac biomarkers. We defined STEMI as acute
chest pain with persistent ST-elevations and elevated cardiac biomarkers; NSTEMI as acute
chest pain, ST-depression or T-inversions combined with elevated cardiac biomarkers; and
UAP as acute chest pain, ST-depression or T-inversions combined with negative cardiac bio-
markers.[30] We considered the patients having typical symptoms and ST-segment elevation,
but no significant coronary obstruction as ST-elevation myocardial infarction patients, if they
had large cardiac enzyme release (creatine kinase-MBmass>50 mg/l). From the ACS patients,
only MI patients were included in this study and those suffering from UAP were excluded.

Patients in the replication sample I were participants of the Tampere Acute Coronary Syn-
drome Study (TACOS) conducted in the city of Tampere and 11 neighbouring municipalities,
a population of 340,000 where practically all patients with ACS are admitted to Tampere Uni-
versity Hospital [31]. During January 2002 to March 2003, patients admitted to the emergency
department of Tampere University Hospital presenting symptoms of ACS verified by elevated
blood troponin I (cTnI>0.2 mg/L) value were recruited to the study. In addition, from Septem-
ber 2002 to March 2003, consecutive troponin I-negative patients with symptoms typical of
UAP were recruited. Patients transferred from another department within the hospital or ini-
tially treated for ACS in other hospitals were excluded. The final study sample contained 998
MI patients (343 with STEMI, 655 with NSTEMI). Of these, 564 STEMI or NSTEMI patients
had both sufficient phenotypic information and blood samples available and were selected for
this study. The diagnostic criteria for the TACOS study sample were similar to those of the
Corogene study and have been presented in detail in an earlier publication.[31]

Controls in the discovery sample, replication sample I and subjects in the gene expression
tests were participants of the FINRISK 1992, 1997, 2002 and 2007 cohorts. FINRISK surveys
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have been conducted every 5 years to monitor the risk factors of chronic diseases [32, 33]. For
each survey, a representative random sample was selected from 25–74 year old inhabitants in
different regions in Finland, stratified so that persons were selected from both genders per each
10-year age group in separate regions. A total of 23,036 individuals participated in FINRISK
1992, 1997, 2002 or 2007, and gave written informed consent. For the discovery sample, we
selected as controls FINRISK 1997, 2002 and 2007 study participants from the Helsinki-Vantaa
region using risk set sampling [34]. For each case independently, we sampled two controls (if
possible) from all participants who were of the same sex, of the same birth cohort (±5 years)
and free of cardiovascular disease at least until the time at which the respective case was diag-
nosed with ACS. The sampling was done with replacement, so that it was possible for a partici-
pant to be selected as a control multiple times. For the replication sample I, we selected 613
healthy controls, of which 567 were successfully genotyped, from the FINRISK 1992, 1997,
2002 and 2007 participants born in Pirkanmaa, the same geographical region where the cases
were recruited. As FINRISK sampling does not cover Pirkanmaa, each control has moved from
Pirkanmaa to one of the FINRISK sampling regions.

A second replication sample was formed by combining all FINRISK participants with geno-
type data available, who were genotyped genome-wide for previous studies and imputed with
the same methodology as used for the discovery sample. We defined the disease endpoints
from hospital discharge registries and excluded the controls of the discovery GWAS sample
and replication sample I, individuals with insufficient phenotype data, and participants suffer-
ing from prevalent MI. The final sample contained 16,627 participants including 163 cases of
incident NSTEMI, 99 cases of incident STEMI and 222 cases of incident MI with unspecified
ST-segment status; the median follow-up was 9.93 years.

Gene expression levels were measured from 513 participants recruited during 2007 to the
Dietary, Lifestyle, and Genetic determinants of Obesity and Metabolic syndrome (DILGOM)
study, an extension of the FINRISK 2007 study. 372 of these samples were also used as controls
for the Corogene MI cases in the GWAS. Participants were asked to fast overnight (at least
10 hours) before donating blood samples.

Genetic measurements
The genotypes for the GWAS were from an initial dataset consisting of 2,234 individuals from
the Corogene study, 1,579 individuals selected as controls for the Corogene study sample and
an additional 141 DILGOM participants. The samples were genotyped using the Illumina
HumanHap 610-Quad SNP Array at the Wellcome Trust Sanger Institute, Cambridge, United
Kingdom. We set missing genotypes with clustering probability< 95% and excluded SNPs
with a genotyping success rate< 95%, minor allele frequency (MAF)< 1%, or P< 10−6 for an
exact test of Hardy-Weinberg equilibrium. We also excluded individuals with a genotyping
success rate< 95% and individuals with different reported and genotype-determined gender.
We then estimated the pair-wise identity-by-descent for all pairs in the sample and excluded
one from each pair of closely-related individuals. Finally, we retained only autosomal SNPs.

To augment the dataset with imputed variants, we pre-phased it with shapeIT v1 [35] and
used IMPUTE v2.2.2 [36] with the 1000 Genomes Project integrated variant set (release v3,
March 2012) for genotype imputation. Variants with imputation score< 0.6 or MAF< 5%
were excluded. For the analysis of the case-control sample using only directly genotyped SNPs,
we retained only the MI cases and controls and subjected the remaining sample to the same fil-
ters as previously with the MAF cutoff set at 5%. Additionally, we removed SNPs with P< 0.05
for Pearson's X2 test for genotype missingness between cases and controls. A total of 1,579 MI
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cases (962 NSTEMI, 614 STEMI, 3 MI with unspecified ST-segment status), 1,576 controls,
485,919 genotyped SNPs and 5,968,900 imputed variants passed quality control.

The replication sample I was genotyped using the SequenomMassARRAY iPLEX platform
at the Institute For Molecular Medicine Finland FIMM, Helsinki, Finland, following standard
procedures. Genotype quality was assessed by genotyping 74 samples in duplicate with 100%
concordance for both SNPs. A total of 1,131 participants (390 NSTEMI, 174 STEMI, 567 con-
trols) were successfully genotyped. To form the replication sample II, we combined the geno-
types of the FINRISK participants of the discovery sample with individuals genotyped on a
variety of different genome-wide genotyping arrays for previous studies (Table B in S1 File),
imputed using the same methods as were used for the discovery GWAS. This resulted in both
genotypic and phenotypic information being available for 16,627 FINRISK participants not
used as controls in the discovery and replication I samples.

Gene expression was measured from blood leukocytes using the Illumina HT-12 expression
array as described previously [37]. Briefly, each sample was measured in duplicates and the
probe signal intensities were background corrected and normalized so that the signal intensity
distributions for all samples on all arrays were the same. Correlation between the two technical
replicates was measured and 9 samples were excluded due to poor correlation. Finally, we
log2-transformed the corrected and normalized probe intensities.

Statistical methods
We calculated the genome-wide principal components for the discovery sample with EIGEN-
STRAT v4.2 [38] from 87,046 directly genotyped SNPs in approximate linkage equilibrium.
For all association tests we used an additive genetic model. We analyzed the association of
genetic variants with the MI phenotypes with logistic regression using PLINK v1.07 [39] for
the directly genotyped SNPs and SNPTEST v2.4.0 [40] for the imputed variants. We compared
either all MI patients or only STEMI or NSTEMI patients with the same set of controls using
age, gender and the 10 first genomic principal components as covariates. For the replication
sample I with controls matched for geographical area but not for age or gender, we did not use
age or gender as covariates as recommended [41]. We combined the results of the logistic
regression models with GWAMA v2.1 [42] using inverse-variance weighted fixed- and ran-
dom-effects meta-analysis models. To compare association statistics between different MI
types, we used a Bayesian model comparison analysis method described in detail elsewhere
[43]. For the prospective replication sample II, we used the Cox proportional hazards model
implemented in the "survival" package [44] for R v3.0.2 [45]. We stratified the analysis by study
year, geographical region and genotyping batch setting gender, systolic blood pressure, blood
pressure medication, total cholesterol, HDL-cholesterol, current smoking and prevalent diabe-
tes as covariates. For analyzing the association of genetic variants with gene expression levels,
we used SNPTEST v2.4.0 and linear regression with the probe intensities as the dependent
variables.
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