202 research outputs found

    Phase I Evaluation of Intravenous Ascorbic Acid in Combination with Gemcitabine and Erlotinib in Patients with Metastatic Pancreatic Cancer

    Get PDF
    Preclinical data support further investigation of ascorbic acid in pancreatic cancer. There are currently insufficient safety data in human subjects, particularly when ascorbic acid is combined with chemotherapy.14 subjects with metastatic stage IV pancreatic cancer were recruited to receive an eight week cycle of intravenous ascorbic acid (three infusions per week), using a dose escalation design, along with standard treatment of gemcitabine and erlotinib. Of 14 recruited subjects enrolled, nine completed the study (three in each dosage tier). There were fifteen non-serious adverse events and eight serious adverse events, all likely related to progression of disease or treatment with gemcitabine or erlotinib. Applying RECIST 1.0 criteria, seven of the nine subjects had stable disease while the other two had progressive disease.These initial safety data do not reveal increased toxicity with the addition of ascorbic acid to gemcitabine and erlotinib in pancreatic cancer patients. This, combined with the observed response to treatment, suggests the need for a phase II study of longer duration.Clinicaltrials.gov NCT00954525

    In Vitro Transformation of Primary Human CD34+ Cells by AML Fusion Oncogenes: Early Gene Expression Profiling Reveals Possible Drug Target in AML

    Get PDF
    Different fusion oncogenes in acute myeloid leukemia (AML) have distinct clinical and laboratory features suggesting different modes of malignant transformation. Here we compare the in vitro effects of representatives of 4 major groups of AML fusion oncogenes on primary human CD34+ cells. As expected from their clinical similarities, MLL-AF9 and NUP98-HOXA9 had very similar effects in vitro. They both caused erythroid hyperplasia and a clear block in erythroid and myeloid maturation. On the other hand, AML1-ETO and PML-RARA had only modest effects on myeloid and erythroid differentiation. All oncogenes except PML-RARA caused a dramatic increase in long-term proliferation and self-renewal. Gene expression profiling revealed two distinct temporal patterns of gene deregulation. Gene deregulation by MLL-AF9 and NUP98-HOXA9 peaked 3 days after transduction. In contrast, the vast majority of gene deregulation by AML1-ETO and PML-RARA occurred within 6 hours, followed by a dramatic drop in the numbers of deregulated genes. Interestingly, the p53 inhibitor MDM2 was upregulated by AML1-ETO at 6 hours. Nutlin-3, an inhibitor of the interaction between MDM2 and p53, specifically inhibited the proliferation and self-renewal of primary human CD34+ cells transduced with AML1-ETO, suggesting that MDM2 upregulation plays a role in cell transformation by AML1-ETO. These data show that differences among AML fusion oncogenes can be recapitulated in vitro using primary human CD34+ cells and that early gene expression profiling in these cells can reveal potential drug targets in AML

    Nano-carrier based drug delivery systems for sustained antimicrobial agent release from orthopaedic cementous material

    Get PDF
    Total joint replacement (TJR), such as hip and knee replacement, is a popular procedure worldwide. Prosthetic joint infections (PJI) after this procedure have been widely reported, where treatment of such infections is complex with high cost and prolonged hospital stay. In cemented arthroplasties, the use of antibiotic loaded bone cement (ALBC) is a standard practice for the prophylaxis and treatment of PJI. Recently, the development of bacterial resistance by pathogenic microorganisms against most commonly used antibiotics increased the interest in alternative approaches for antimicrobial delivery systems such as nanotechnology. This review summarizes the efforts made to improve the antimicrobial properties of PMMA bone cements using nanotechnology based antibiotic and non-antibiotic delivery systems to overcome drawbacks of ALBC in the prophylaxis and treatment of PJIs after hip and knee replacement

    HARMONI at ELT: overview of the capabilities and expected performance of the ELT's first light, adaptive optics assisted integral field spectrograph.

    Get PDF

    Prediction of LDL cholesterol response to statin using transcriptomic and genetic variation

    Get PDF
    BACKGROUND: Statins are widely prescribed for lowering LDL-cholesterol (LDLC) levels and risk of cardiovascular disease. There is, however, substantial inter-individual variation in the magnitude of statin-induced LDLC reduction. To date, analysis of individual DNA sequence variants has explained only a small proportion of this variability. The present study was aimed at assessing whether transcriptomic analyses could be used to identify additional genetic contributions to inter-individual differences in statin efficacy. RESULTS: Using expression array data from immortalized lymphoblastoid cell lines derived from 372 participants of the Cholesterol and Pharmacogenetics clinical trial, we identify 100 signature genes differentiating high versus low statin responders. A radial-basis support vector machine prediction model of these signature genes explains 12.3% of the variance in statin-mediated LDLC change. Addition of SNPs either associated with expression levels of the signature genes (eQTLs) or previously reported to be associated with statin response in genome-wide association studies results in a combined model that predicts 15.0% of the variance. Notably, a model of the signature gene associated eQTLs alone explains up to 17.2% of the variance in the tails of a separate subset of the Cholesterol and Pharmacogenetics population. Furthermore, using a support vector machine classification model, we classify the most extreme 15% of high and low responders with high accuracy. CONCLUSIONS: These results demonstrate that transcriptomic information can explain a substantial proportion of the variance in LDLC response to statin treatment, and suggest that this may provide a framework for identifying novel pathways that influence cholesterol metabolism. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13059-014-0460-9) contains supplementary material, which is available to authorized users

    Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes

    Get PDF
    Human matrix metalloproteinases (MMPs) belong to the M10 family of the MA clan of endopeptidases. They are ubiquitarian enzymes, structurally characterized by an active site where a Zn(2+) atom, coordinated by three histidines, plays the catalytic role, assisted by a glutamic acid as a general base. Various MMPs display different domain composition, which is very important for macromolecular substrates recognition. Substrate specificity is very different among MMPs, being often associated to their cellular compartmentalization and/or cellular type where they are expressed. An extensive review of the different MMPs structural and functional features is integrated with their pathological role in several types of diseases, spanning from cancer to cardiovascular diseases and to neurodegeneration. It emerges a very complex and crucial role played by these enzymes in many physiological and pathological processes

    Current concepts and future of noninvasive procedures for diagnosing oral squamous cell carcinoma - a systematic review

    Get PDF
    corecore