15 research outputs found

    Global database on large magnitude explosive volcanic eruptions (LaMEVE)

    Get PDF
    © 2012 Crosweller et al. To facilitate the assessment of hazards and risk from volcanoes, we have created a comprehensive global database of Quaternary Large Magnitude Explosive Volcanic Eruptions (LaMEVE). This forms part of the larger Volcanic Global Risk Identification and Analysis Project (VOGRIPA), and also forms part of the Global Volcano Model (GVM) initiative (www.globalvolcanomodel.org). A flexible search tool allows users to select data on a global, regional or local scale; the selected data can be downloaded into a spreadsheet. The database is publically available online at www.bgs.ac. uk/vogripa and currently contains information on nearly 3,000 volcanoes and over 1,800 Quaternary eruption records. Not all volcanoes currently have eruptions associated with them but have been included to allow for easy expansion of the database as more data are found. Data fields include: Magnitude, Volcanic Explosivity Index (VEI), deposit volumes, eruption dates, and rock type. The scientific community is invited to contribute new data and also alert the database manager to potentially incorrect data. Whilst the database currently focuses only on large magnitude eruptions, it will be expanded to include data specifically relating to the principal volcanic hazards (e.g. pyroclastic flows, tephra fall, lahars, debris avalanches, ballistics), as well as vulnerability (e.g. population figures, building type) to facilitate risk assessments of future eruptions

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Multilevel and Multiregional Analysis of the Electricity Metabolism of Mexico across Sectors

    No full text
    This paper presents a novel tool for electricity planning, based on an improvement of MuSIASEM (Multiscale Integrated Analysis of the Societal and Ecological Metabolism) by incorporating a new regional analysis of the electricity metabolism across levels. An analysis of Mexico illustrates this toolkit and shows that the industry sector has economic energy intensity (EEI) with 40.3 MWh/MMXN reaching a higher value than the commerce and services sector with 0.84 MWh/MMXN. Regarding the economic labor productivity (ELP) indicator (AV/h), the industrial sector with 208.5 TMXN/Kh reached a higher value than the commercial and services sector with 114.3 TMXN/Kh. Regarding the exosomatic metabolic rate (EMR), the household sector obtained 59.3 KWh/Kh, whereas the economic sector reached 2486.4 KWh/Kh. Disaggregation of the EMR indicator into economic sectors shows that the industrial sector reached 8.4 KWh/Kh and the commercial and services sector reached 0.10 KWh/Kh. The lack of complete data for the agricultural sector does not allow us to calculate EEI, ELP, and EMR indicators accurately. This innovative approach is useful for governance because it helps us to understand and reduce asymmetries across regions in terms of electricity consumption, resulting in more social equality and a better economic equilibrium across sectors and regions

    Analysis of a global database on quaternary explosive volcanism

    No full text
    Large volcanic eruptions, despite their low frequency of occurrence, have the potential to cause massive loss of life and affect the health of humans and animals and cause major economic losses. The knowledge of the evolution of past volcanic processes is key to mitigate the effects of future eruptions. Field studies along with application of diverse techniques of analysis generate volcanic data, such as, eruption ages, petrological classification, estimates of ejected volume, intensity and magnitude. The design of databases on volcano data constitutes a tool for experts in charge of identifying places at risk, forecasting volcano activity, and scientists interested in finding the relation between volcanic eruptions and climate change. A global database on Quaternary explosive on explosive volcanism has been developed as part of the VOGRIPA project and implemented which main aim is to facilitate accessing data on volcanic eruptions for the scientific community. An explosive eruption is included in the database if its magnitude is 4 or above and if it has been dated. Also at least one measure of the eruption magnitude, such as erupted mass, erupted volume or Volcano Explosivity Index (VEI) is required. The use of the age data is examined for periods of time according to the nature of the age data and also considering major Earth events such as glaciations and interglacials. As we go back in the time, peaks in volcanic activity most likely reflect biases of data; however is an increase in the number of explosive eruptions in the 7th to 10th century and in the past 650 years in the global database on explosive volcanism as well as ice core records. Statistical analyses are applied to eruption records to test the linked hypothesis that the volcanism has been constant over the time interval chosen and that there is not under-recording. The hypothesis is in agreement for the period between 15,000 and 45,000 years BP, and for the whole period including only eruptions with Magnitude 7. Number of explosive eruptions with M>4 and active volcanoes back to 40,000 years BP in 2,500 year interval

    Using Historical Databases for the Identification and Analysis of Future Volcanic Risk:VOGRIPA

    No full text
    VOGRIPA (Volcano Global Risk Identification and Analysis Project) originated as part of the Global Risk Identification Programme (GRIP under the auspices of the United Nations and World Bank. GRIP is a 5-year programme aiming at improving global knowledge about risk from natural hazards. VOGRIPA is also a formal IAVCEI project. The objectives are to create a global database of volcanic activity, hazards and vulnerability information that can be analysed to identify locations at high risk from volcanism, gaps in knowledge about hazards and risk, and allow scientists and disaster managers to analyse risk within a global context of systematic information. The inclusion of risk and vulnerability as well as hazard sets VOGRIPA apart from most previous databases. The University of Bristol is the coordinating centre for the project, which is an international partnership including the Smithsonian Institution, Geological Survey of Japan, British Geological Survey, University of Buffalo (SUNY), University of South Florida and Munich Re. The partnership is intended to grow, and any individuals or institutions that are able to contribute resources to VOGRIPA objectives are welcome to participate. Work has already begun on populating a database of large magnitude explosive eruptions reaching back to the Quaternary, with extreme-value statistics being used to evaluate the magnitude-frequency relationship, and also an assessment of how the quality and completeness of records affect the results. The following 4 years of funding from the European Research Council will be used to establish international collaborations to develop different aspects of the database, with data being accessible online once it is sufficiently complete and analyses have been carried out. It is anticipated that such a resource would be useful for the scientific community, civil authorities with responsibility for mitigating and managing volcanic hazards, and the public

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7
    corecore