280 research outputs found

    Effective Treatments of UTI—Is Intravesical Therapy the Future?

    Get PDF
    Urinary tract infection (UTI) afflicts millions of patients globally each year. While the majority of UTIs are successfully treated with orally administered antibiotics, the impact of oral antibiotics on the host microbiota is under close research scrutiny and the potential for dysbiosis is a cause for concern. Optimal treatment of UTI relies upon the selection of an agent which displays appropriate pharmacokinetic-pharmacodynamic (PK-PD) properties that will deliver appropriately high concentrations in the urinary tract after oral administration. Alternatively, high local concentrations of antibiotic at the urothelial surface can be achieved by direct instillation into the urinary tract. For antibiotics with the appropriate physicochemical properties, this can be of critical importance in cases for which an intracellular urothelial bacterial reservoir is suspected. In this review, we summarise the underpinning biopharmaceutical barriers to effective treatment of UTI and provide an overview of the evidence for the deployment of the intravesical administration route for antibiotics

    High protein diet maintains glucose production during exercise-induced energy deficit: a controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Inadequate energy intake induces changes in endogenous glucose production (GP) to preserve muscle mass. Whether addition provision of dietary protein modulates GP response to energy deficit is unclear. The objective was to determine whether exercise-induced energy deficit effects on glucose metabolism are mitigated by increased dietary protein.</p> <p>Methods</p> <p>Nineteen men ([mean ± SD] 23 ± 2 y, VO<sub>2peak </sub>59 ± 5 ml·kg<sup>-1</sup>·min<sup>-1</sup>) were divided into three groups, two consuming moderate (MP; 0.9 g protein kg<sup>-1 </sup>d<sup>-1</sup>), and one high (HP; 1.8 g protein kg<sup>-1 </sup>d<sup>-1</sup>) protein diets (55% energy from carbohydrate) for 11 days. Following 4 days of energy balance (D1-4), energy expenditure was increased for 7 days (D5-12) in all groups. Energy intake was unchanged in two, creating a 1000 kcal d<sup>-1 </sup>deficit (DEF-MP, DEF-HP; n = 6, both groups), whereas energy balance was maintained in the third (BAL-MP, n = 7). Biochemical markers of substrate metabolism were measured during fasting rest on D4 and D12, as were GP and contribution of gluconeogenesis to endogenous glucose production (<it>f</it><sub>gng</sub>) using 4-h primed, continuous infusions of [6,6-<sup>2</sup>H<sub>2</sub>]glucose (dilution-method) and [2-<sup>13</sup>C]glycerol (MIDA technique). Glycogen breakdown (GB) was derived from GP and <it>f</it><sub>gng</sub>.</p> <p>Results</p> <p>Plasma β-hydroxybutyrate levels increased, and plasma glucose and insulin declined from D4 to D12, regardless of group. DEF-MP experienced decreased plasma GP from D4 to D12 ([mean change ± SD] 0.24 ± 0.24 mg·kg<sup>-1</sup>·min<sup>-1</sup>), due to reduced GB from D4 (1.40 ± 0.28 mg·kg<sup>-1</sup>·min<sup>-1</sup>) to D12 (1.16 ± 0.17 mg·kg<sup>-1</sup>·min<sup>-1</sup>), P < 0.05. Conversely, BAL-MP and DEF-HP sustained GP from D4 to D12 ([mean change ± SD] 0.1 ± 0.5 and 0.0 ± 0.2 mg·kg<sup>-1</sup>·min<sup>-1</sup>, respectively) by maintaining GB.</p> <p>Conclusion</p> <p>Exercise-induced energy deficit decreased GP and additional dietary protein mitigated that effect.</p

    Emerging molecular mechanisms and genetic targets for developing novel therapeutic strategies for treating bladder diseases

    Get PDF
    Bladder diseases affect millions of patients worldwide and compromise their quality of life with a substantial economic impact. The not fully understood aetiologies of bladder diseases limit the current diagnosis and therapeutic options to primarily symptomatic treatment. In addition, bladder targeted drug delivery is challenging due to its unique anatomical features and its natural physiological function of urine storage and frequent voiding. Therefore, current treatment options often fail to provide a highly effective, precisely targeted and long-lasting treatment. With the growing maturity of gene therapy, comprehensive studies are needed to provide a better understanding of the molecular mechanisms underpinning bladder diseases and help to identify novel gene therapeutic targets and biomarkers for treating bladder diseases. In this review, molecular mechanisms involved in pathology of bladder cancer, interstitial cystitis and overactive bladder syndrome are reviewed, with focus on establishing potential novel treatment options. Proposed novel therapies, including gene therapy combined with nanotechnology, localised drug delivery by nanoparticles, and probiotics, are discussed in regard to their safety profiles, efficacy, treatment lenght, precise targeting, and in comparison to conventional treatment methods

    Elevated Proteasome Capacity Extends Replicative Lifespan in Saccharomyces cerevisiae

    Get PDF
    Aging is characterized by the accumulation of damaged cellular macromolecules caused by declining repair and elimination pathways. An integral component employed by cells to counter toxic protein aggregates is the conserved ubiquitin/proteasome system (UPS). Previous studies have described an age-dependent decline of proteasomal function and increased longevity correlates with sustained proteasome capacity in centenarians and in naked mole rats, a long-lived rodent. Proof for a direct impact of enhanced proteasome function on longevity, however, is still lacking. To determine the importance of proteasome function in yeast aging, we established a method to modulate UPS capacity by manipulating levels of the UPS–related transcription factor Rpn4. While cells lacking RPN4 exhibit a decreased non-adaptable proteasome pool, loss of UBR2, an ubiquitin ligase that regulates Rpn4 turnover, results in elevated Rpn4 levels, which upregulates UPS components. Increased UPS capacity significantly enhances replicative lifespan (RLS) and resistance to proteotoxic stress, while reduced UPS capacity has opposing consequences. Despite tight transcriptional co-regulation of the UPS and oxidative detoxification systems, the impact of proteasome capacity on lifespan is independent of the latter, since elimination of Yap1, a key regulator of the oxidative stress response, does not affect lifespan extension of cells with higher proteasome capacity. Moreover, since elevated proteasome capacity results in improved clearance of toxic huntingtin fragments in a yeast model for neurodegenerative diseases, we speculate that the observed lifespan extension originates from prolonged elimination of damaged proteins in old mother cells. Epistasis analyses indicate that proteasome-mediated modulation of lifespan is at least partially distinct from dietary restriction, Tor1, and Sir2. These findings demonstrate that UPS capacity determines yeast RLS by a mechanism that is distinct from known longevity pathways and raise the possibility that interventions to promote enhanced proteasome function will have beneficial effects on longevity and age-related disease in humans

    An Integrated Framework for Intersectorality: Nonprofitness and Its Influence on Society and Public Administration Programs

    Get PDF
    Cross-sector interactions have long occurred in the public delivery of goods, services, and interests. While scholars have often addressed cross-sector interactions using the dimensions of publicness (state) and privateness (market), an intersectoral framework necessitates the understanding and incorporation of nonprofitness to account for the dimensions of nonprofits along the public-private continuum. This article proposes a framework for identifying the dimensions of nonprofits in an intersectoral world and draws on relevant examples to illustrate the presence and influence of nonprofitness. The article then focuses on the future of education in the field of public administration and, in light of the proposed framework, makes and considers recommendations to help educational programs better equip students to appreciate work across sectors

    Sarcopenia and cachexia: the adaptations of negative regulators of skeletal muscle mass

    Get PDF
    Recent advances in our understanding of the biology of muscle, and how anabolic and catabolic stimuli interact to control muscle mass and function, have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle occurs as a consequence of several chronic diseases (cachexia) as well as normal aging (sarcopenia). Although many negative regulators [Atrogin-1, muscle ring finger-1, nuclear factor-kappaB (NF-κB), myostatin, etc.] have been proposed to enhance protein degradation during both sarcopenia and cachexia, the adaptation of mediators markedly differs among these conditions. Sarcopenic and cachectic muscles have been demonstrated to be abundant in myostatin- and apoptosis-linked molecules. The ubiquitin–proteasome system (UPS) is activated during many different types of cachexia (cancer cachexia, cardiac heart failure, chronic obstructive pulmonary disease), but not many mediators of the UPS change during sarcopenia. NF-κB signaling is activated in cachectic, but not in sarcopenic, muscle. Some studies have indicated a change of autophagic signaling during both sarcopenia and cachexia, but the adaptation remains to be elucidated. This review provides an overview of the adaptive changes in negative regulators of muscle mass in both sarcopenia and cachexia

    Circadian Rhythm and Sleep Disruption: Causes, Metabolic Consequences and Countermeasures.

    Get PDF
    Circadian (∼ 24 hour) timing systems pervade all kingdoms of life, and temporally optimize behaviour and physiology in humans. Relatively recent changes to our environments, such as the introduction of artificial lighting, can disorganize the circadian system, from the level of the molecular clocks that regulate the timing of cellular activities to the level of synchronization between our daily cycles of behaviour and the solar day. Sleep/wake cycles are intertwined with the circadian system, and global trends indicate that these too are increasingly subject to disruption. A large proportion of the world's population is at increased risk of environmentally-driven circadian rhythm and sleep disruption, and a minority of individuals are also genetically predisposed to circadian misalignment and sleep disorders. The consequences of disruption to the circadian system and sleep are profound and include myriad metabolic ramifications, some of which may be compounded by adverse effects on dietary choices. If not addressed, the deleterious effects of such disruption will continue to cause widespread health problems; therefore, implementation of the numerous behavioural and pharmaceutical interventions that can help restore circadian system alignment and enhance sleep will be important

    Ovarian cancer

    Get PDF
    Ovarian cancer is not a single disease and can be subdivided into at least five different histological subtypes that have different identifiable risk factors, cells of origin, molecular compositions, clinical features and treatments. Ovarian cancer is a global problem, is typically diagnosed at a late stage and has no effective screening strategy. Standard treatments for newly diagnosed cancer consist of cytoreductive surgery and platinum-based chemotherapy. In recurrent cancer, chemotherapy, anti-angiogenic agents and poly(ADP-ribose) polymerase inhibitors are used, and immunological therapies are currently being tested. High-grade serous carcinoma (HGSC) is the most commonly diagnosed form of ovarian cancer and at diagnosis is typically very responsive to platinum-based chemotherapy. However, in addition to the other histologies, HGSCs frequently relapse and become increasingly resistant to chemotherapy. Consequently, understanding the mechanisms underlying platinum resistance and finding ways to overcome them are active areas of study in ovarian cancer. Substantial progress has been made in identifying genes that are associated with a high risk of ovarian cancer (such as BRCA1 and BRCA2), as well as a precursor lesion of HGSC called serous tubal intraepithelial carcinoma, which holds promise for identifying individuals at high risk of developing the disease and for developing prevention strategies

    Politics, 1641-1660

    Get PDF
    corecore