418 research outputs found

    Shape-induced force fields in optical trapping

    Get PDF
    Advances in optical tweezers, coupled with the proliferation of two-photon polymerization systems, mean that it is now becoming routine to fabricate and trap non-spherical particles. The shaping of both light beams and particles allows fine control over the flow of momentum from the optical to mechanical regimes. However, understanding and predicting the behaviour of such systems is highly complex in comparison with the traditional optically trapped microsphere. In this Article, we present a conceptually new and simple approach based on the nature of the optical force density. We illustrate the method through the design and fabrication of a shaped particle capable of acting as a passive force clamp, and we demonstrate its use as an optically trapped probe for imaging surface topography. Further applications of the design rules highlighted here may lead to new sensors for probing biomolecule mechanics, as well as to the development of optically actuated micromachines

    Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing

    Full text link
    [EN] Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplastreplicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear potato spindle tuber viroid (PSTVd, Pospiviroidae). This revealed higher mutation frequencies in ELVd than in PSTVd, as well as marked differences in the types of mutations produced. Rates of spontaneous mutation, quantified in vivo using the lethal mutation method, ranged from 1/1000 to 1/800 for ELVd and from 1/7000 to 1/3800 for PSTVd depending on sequencing run. These results suggest that extremely high mutability is a common feature of chloroplastic viroids, whereas the mutation rates of PSTVd and potentially other nuclear viroids appear significantly lower and closer to those of some RNA viruses.This work was supported by the European Research Council (erc.europa.eu; ERC-2011-StG-281191-VIRMUT to RS), the Spanish Ministerio de Economia y Competitividad (www.mineco.gob.es; BFU2013-41329 grant to RS, BFU2014-56812-P grant to RF, and a predoctoral fellowship to ALC), and the Spanish Junta de Comunidades de Castilla-La Mancha (www.castillalamancha.es;postdoctoral fellowship to CB). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.López-Carrasco, MA.; Ballesteros Martínez, C.; Sentandreu, V.; Delgado Villar, SG.; Gago Zachert, SP.; Flores Pedauye, R.; Sanjuan Verdeguer, R. (2017). Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing. PLoS Pathogens. 13(9):1-17. https://doi.org/10.1371/journal.ppat.1006547S117139Ganai, R. A., & Johansson, E. (2016). DNA Replication—A Matter of Fidelity. Molecular Cell, 62(5), 745-755. doi:10.1016/j.molcel.2016.05.003Lynch, M. (2010). Evolution of the mutation rate. Trends in Genetics, 26(8), 345-352. doi:10.1016/j.tig.2010.05.003Sanjuán, R., & Domingo-Calap, P. (2016). Mechanisms of viral mutation. Cellular and Molecular Life Sciences, 73(23), 4433-4448. doi:10.1007/s00018-016-2299-6Gago, S., Elena, S. F., Flores, R., & Sanjuan, R. (2009). Extremely High Mutation Rate of a Hammerhead Viroid. Science, 323(5919), 1308-1308. doi:10.1126/science.1169202Flores, R., Gago-Zachert, S., Serra, P., Sanjuán, R., & Elena, S. F. (2014). Viroids: Survivors from the RNA World? Annual Review of Microbiology, 68(1), 395-414. doi:10.1146/annurev-micro-091313-103416Flores, R., Minoia, S., Carbonell, A., Gisel, A., Delgado, S., López-Carrasco, A., … Di Serio, F. (2015). Viroids, the simplest RNA replicons: How they manipulate their hosts for being propagated and how their hosts react for containing the infection. Virus Research, 209, 136-145. doi:10.1016/j.virusres.2015.02.027Steger, G., & Perreault, J.-P. (2016). Structure and Associated Biological Functions of Viroids. Advances in Virus Research, 141-172. doi:10.1016/bs.aivir.2015.11.002Diener, T. O. (1989). Circular RNAs: relics of precellular evolution? Proceedings of the National Academy of Sciences, 86(23), 9370-9374. doi:10.1073/pnas.86.23.9370Ambrós, S., Hernández, C., & Flores, R. (1999). Rapid generation of genetic heterogeneity in progenies from individual cDNA clones of peach latent mosaic viroid in its natural host The data reported in this paper are in the EMBL nucleotide sequence database and assigned the accession nos AJ241818–AJ241850. Journal of General Virology, 80(8), 2239-2252. doi:10.1099/0022-1317-80-8-2239Navarro, J.-A., Vera, A., & Flores, R. (2000). A Chloroplastic RNA Polymerase Resistant to Tagetitoxin Is Involved in Replication of Avocado Sunblotch Viroid. Virology, 268(1), 218-225. doi:10.1006/viro.1999.0161Rodio, M.-E., Delgado, S., De Stradis, A., Gómez, M.-D., Flores, R., & Di Serio, F. (2007). A Viroid RNA with a Specific Structural Motif Inhibits Chloroplast Development. The Plant Cell, 19(11), 3610-3626. doi:10.1105/tpc.106.049775Carbonell, A., De la Peña, M., Flores, R., & Gago, S. (2006). Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads: differences in co- and post-transcriptional self-cleavage may explain the lack of trinucleotide AUC in most natural hammerheads. Nucleic Acids Research, 34(19), 5613-5622. doi:10.1093/nar/gkl717Hutchins, C. J., Rathjen, P. D., Forster, A. C., & Symons, R. H. (1986). Self-cleavage of plus and minus RNA transcripts of avocado sunblotch viroid. Nucleic Acids Research, 14(9), 3627-3640. doi:10.1093/nar/14.9.3627PRODY, G. A., BAKOS, J. T., BUZAYAN, J. M., SCHNEIDER, I. R., & BRUENING, G. (1986). Autolytic Processing of Dimeric Plant Virus Satellite RNA. Science, 231(4745), 1577-1580. doi:10.1126/science.231.4745.1577Nohales, M.-A., Molina-Serrano, D., Flores, R., & Daros, J.-A. (2012). Involvement of the Chloroplastic Isoform of tRNA Ligase in the Replication of Viroids Belonging to the Family Avsunviroidae. Journal of Virology, 86(15), 8269-8276. doi:10.1128/jvi.00629-12Branch, A. D., Benenfeld, B. J., & Robertson, H. D. (1988). Evidence for a single rolling circle in the replication of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 85(23), 9128-9132. doi:10.1073/pnas.85.23.9128Daros, J.-A., & Flores, R. (2004). Arabidopsis thaliana has the enzymatic machinery for replicating representative viroid species of the family Pospiviroidae. Proceedings of the National Academy of Sciences, 101(17), 6792-6797. doi:10.1073/pnas.0401090101Feldstein, P. A., Hu, Y., & Owens, R. A. (1998). Precisely full length, circularizable, complementary RNA: An infectious form of potato spindle tuber viroid. Proceedings of the National Academy of Sciences, 95(11), 6560-6565. doi:10.1073/pnas.95.11.6560Gas, M.-E., Hernández, C., Flores, R., & Daròs, J.-A. (2007). Processing of Nuclear Viroids In Vivo: An Interplay between RNA Conformations. PLoS Pathogens, 3(11), e182. doi:10.1371/journal.ppat.0030182Nohales, M.-A., Flores, R., & Daros, J.-A. (2012). Viroid RNA redirects host DNA ligase 1 to act as an RNA ligase. Proceedings of the National Academy of Sciences, 109(34), 13805-13810. doi:10.1073/pnas.1206187109Brass, J. R. J., Owens, R. A., Matoušek, J., & Steger, G. (2017). Viroid quasispecies revealed by deep sequencing. RNA Biology, 14(3), 317-325. doi:10.1080/15476286.2016.1272745Bull, J. J., Sanjuán, R., & Wilke, C. O. (2007). Theory of Lethal Mutagenesis for Viruses. Journal of Virology, 81(6), 2930-2939. doi:10.1128/jvi.01624-06Cuevas, J. M., González-Candelas, F., Moya, A., & Sanjuán, R. (2009). Effect of Ribavirin on the Mutation Rate and Spectrum of Hepatitis C Virus In Vivo. Journal of Virology, 83(11), 5760-5764. doi:10.1128/jvi.00201-09Ribeiro, R. M., Li, H., Wang, S., Stoddard, M. B., Learn, G. H., Korber, B. T., … Perelson, A. S. (2012). Quantifying the Diversification of Hepatitis C Virus (HCV) during Primary Infection: Estimates of the In Vivo Mutation Rate. PLoS Pathogens, 8(8), e1002881. doi:10.1371/journal.ppat.1002881Acevedo, A., Brodsky, L., & Andino, R. (2013). Mutational and fitness landscapes of an RNA virus revealed through population sequencing. Nature, 505(7485), 686-690. doi:10.1038/nature12861Cuevas, J. M., Geller, R., Garijo, R., López-Aldeguer, J., & Sanjuán, R. (2015). Extremely High Mutation Rate of HIV-1 In Vivo. PLOS Biology, 13(9), e1002251. doi:10.1371/journal.pbio.1002251Acevedo, A., & Andino, R. (2014). Library preparation for highly accurate population sequencing of RNA viruses. Nature Protocols, 9(7), 1760-1769. doi:10.1038/nprot.2014.118Kennedy, S. R., Schmitt, M. W., Fox, E. J., Kohrn, B. F., Salk, J. J., Ahn, E. H., … Loeb, L. A. (2014). Detecting ultralow-frequency mutations by Duplex Sequencing. Nature Protocols, 9(11), 2586-2606. doi:10.1038/nprot.2014.170Franklin, R. M. (1966). Purification and properties of the replicative intermediate of the RNA bacteriophage R17. Proceedings of the National Academy of Sciences, 55(6), 1504-1511. doi:10.1073/pnas.55.6.1504López-Carrasco, A., Gago-Zachert, S., Mileti, G., Minoia, S., Flores, R., & Delgado, S. (2015). The transcription initiation sites of eggplant latent viroid strands map within distinct motifs in theirin vivoRNA conformations. RNA Biology, 13(1), 83-97. doi:10.1080/15476286.2015.1119365Keese, P., & Symons, R. H. (1985). Domains in viroids: evidence of intermolecular RNA rearrangements and their contribution to viroid evolution. Proceedings of the National Academy of Sciences, 82(14), 4582-4586. doi:10.1073/pnas.82.14.4582López-Carrasco, A., & Flores, R. (2016). Dissecting the secondary structure of the circular RNA of a nuclear viroid in vivo: A «naked» rod-like conformation similar but not identical to that observed in vitro. RNA Biology, 14(8), 1046-1054. doi:10.1080/15476286.2016.1223005Flores, R., Hernandez, C., de la Peña, M., Vera, A., & Daros, J.-A. (2001). Hammerhead Ribozyme Structure and Function in Plant RNA Replication. Ribonucleases - Part A, 540-552. doi:10.1016/s0076-6879(01)41175-xMartick, M., & Scott, W. G. (2006). Tertiary Contacts Distant from the Active Site Prime a Ribozyme for Catalysis. Cell, 126(2), 309-320. doi:10.1016/j.cell.2006.06.036Ruffner, D. E., Stormo, G. D., & Uhlenbeck, O. C. (1990). Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry, 29(47), 10695-10702. doi:10.1021/bi00499a018Flores, R., Serra, P., Minoia, S., Di Serio, F., & Navarro, B. (2012). Viroids: From Genotype to Phenotype Just Relying on RNA Sequence and Structural Motifs. Frontiers in Microbiology, 3. doi:10.3389/fmicb.2012.00217Owens, R. A., Chen, W., Hu, Y., & Hsu, Y.-H. (1995). Suppression of Potato Spindle Tuber Viroid Replication and Symptom Expression by Mutations Which Stabilize the Pathogenicity Domain. Virology, 208(2), 554-564. doi:10.1006/viro.1995.1186Takeda, R., Petrov, A. I., Leontis, N. B., & Ding, B. (2011). A Three-Dimensional RNA Motif in Potato spindle tuber viroid Mediates Trafficking from Palisade Mesophyll to Spongy Mesophyll in Nicotiana benthamiana. The Plant Cell, 23(1), 258-272. doi:10.1105/tpc.110.081414Zhong, X., Leontis, N., Qian, S., Itaya, A., Qi, Y., Boris-Lawrie, K., & Ding, B. (2006). Tertiary Structural and Functional Analyses of a Viroid RNA Motif by Isostericity Matrix and Mutagenesis Reveal Its Essential Role in Replication. Journal of Virology, 80(17), 8566-8581. doi:10.1128/jvi.00837-06Zhong, X., Tao, X., Stombaugh, J., Leontis, N., & Ding, B. (2007). Tertiary structure and function of an RNA motif required for plant vascular entry to initiate systemic trafficking. The EMBO Journal, 26(16), 3836-3846. doi:10.1038/sj.emboj.7601812Zhong, X., Archual, A. J., Amin, A. A., & Ding, B. (2008). A Genomic Map of Viroid RNA Motifs Critical for Replication and Systemic Trafficking. The Plant Cell, 20(1), 35-47. doi:10.1105/tpc.107.056606Thomas, M. J., Platas, A. A., & Hawley, D. K. (1998). Transcriptional Fidelity and Proofreading by RNA Polymerase II. Cell, 93(4), 627-637. doi:10.1016/s0092-8674(00)81191-5Gout, J.-F., Thomas, W. K., Smith, Z., Okamoto, K., & Lynch, M. (2013). Large-scale detection of in vivo transcription errors. Proceedings of the National Academy of Sciences, 110(46), 18584-18589. doi:10.1073/pnas.1309843110Hedtke, B. (1997). Mitochondrial and Chloroplast Phage-Type RNA Polymerases in Arabidopsis. Science, 277(5327), 809-811. doi:10.1126/science.277.5327.809Lerbs-Mache, S. (1993). The 110-kDa polypeptide of spinach plastid DNA-dependent RNA polymerase: single-subunit enzyme or catalytic core of multimeric enzyme complexes? Proceedings of the National Academy of Sciences, 90(12), 5509-5513. doi:10.1073/pnas.90.12.5509Oldenkott, B., Yamaguchi, K., Tsuji-Tsukinoki, S., Knie, N., & Knoop, V. (2014). Chloroplast RNA editing going extreme: more than 3400 events of C-to-U editing in the chloroplast transcriptome of the lycophyteSelaginella uncinata. RNA, 20(10), 1499-1506. doi:10.1261/rna.045575.114Codoñer, F. M., Darós, J.-A., Solé, R. V., & Elena, S. F. (2006). The Fittest versus the Flattest: Experimental Confirmation of the Quasispecies Effect with Subviral Pathogens. PLoS Pathogens, 2(12), e136. doi:10.1371/journal.ppat.0020136Eigen, M. (1971). Selforganization of matter and the evolution of biological macromolecules. Die Naturwissenschaften, 58(10), 465-523. doi:10.1007/bf00623322Lynch, M. (2011). The Lower Bound to the Evolution of Mutation Rates. Genome Biology and Evolution, 3, 1107-1118. doi:10.1093/gbe/evr066Bradwell, K., Combe, M., Domingo-Calap, P., & Sanjuán, R. (2013). Correlation Between Mutation Rate and Genome Size in Riboviruses: Mutation Rate of Bacteriophage Qβ. Genetics, 195(1), 243-251. doi:10.1534/genetics.113.154963Drake, J. W. (1991). A constant rate of spontaneous mutation in DNA-based microbes. Proceedings of the National Academy of Sciences, 88(16), 7160-7164. doi:10.1073/pnas.88.16.7160Schmitt, M. W., Kennedy, S. R., Salk, J. J., Fox, E. J., Hiatt, J. B., & Loeb, L. A. (2012). Detection of ultra-rare mutations by next-generation sequencing. Proceedings of the National Academy of Sciences, 109(36), 14508-14513. doi:10.1073/pnas.120871510

    Effect of St. John's Wort (Hypericum perforatum) treatment on restraint stress-induced behavioral and biochemical alteration in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A stressful stimulus is a crucial determinant of health and disease. Antidepressants are used to manage stress and their related effects. The present study was designed to investigate the effect of St. John's Wort (<it>Hypericum perforatum</it>) in restraint stress-induced behavioral and biochemical alterations in mice.</p> <p>Methods</p> <p>Animals were immobilized for a period of 6 hr. St. John's Wort (50 and 100 mg/kg) was administered 30 minutes before the animals were subjecting to acute immobilized stress. Various behavioral tests parameters for anxiety, locomotor activity and nociceptive threshold were assessed followed by biochemical assessments (malondialdehyde level, glutathione, catalase, nitrite and protein) subsequently.</p> <p>Results</p> <p>6-hr acute restraint stress caused severe anxiety like behavior, antinociception and impaired locomotor activity as compared to unstressed animals. Biochemical analyses revealed an increase in malondialdehyde, nitrites concentration, depletion of reduced glutathione and catalase activity as compared to unstressed animal brain. Five days St. John's Wort treatment in a dose of 50 mg/kg and 100 mg/kg significantly attenuated restraint stress-induced behavioral (improved locomotor activity, reduced tail flick latency and antianxiety like effect) and oxidative damage as compared to control (restraint stress).</p> <p>Conclusion</p> <p>Present study highlights the modest activity of St. John's Wort against acute restraint stress induced modification.</p

    Increased methylation of glucocorticoid receptor gene (NR3C1) in adults with a history of childhood maltreatment: a link with the severity and type of trauma

    Get PDF
    Childhood maltreatment, through epigenetic modification of the glucocorticoid receptor gene (NR3C1), influences the hypothalamic–pituitary–adrenal axis (HPA axis). We investigated whether childhood maltreatment and its severity were associated with increased methylation of the exon 1F NR3C1 promoter, in 101 borderline personality disorder (BPD) and 99 major depressive disorder (MDD) subjects with, respectively, a high and low rate of childhood maltreatment, and 15 MDD subjects with comorbid post-traumatic stress disorder (PTSD). Childhood sexual abuse, its severity and the number of type of maltreatments positively correlated with NR3C1 methylation (P=6.16 × 10−8, 5.18 × 10−7 and 1.25 × 10−9, respectively). In BPD, repetition of abuses and sexual abuse with penetration correlated with a higher methylation percentage. Peripheral blood might therefore serve as a proxy for environmental effects on epigenetic processes. These findings suggest that early life events may permanently impact on the HPA axis though epigenetic modifications of the NR3C1. This is a mechanism by which childhood maltreatment may lead to adulthood psychopathology

    Association between ultrasound-detected synovitis and knee pain: a population-based case-control study with both cross-sectional and follow-up data

    Get PDF
    Background: Recently an important role for synovial pathology in the initiation and progression of knee osteoarthritis (OA) has been emphasised. This study aimed to examine whether ultrasonographydetected synovial changes (USSCs) associate with knee pain (KP) in a community population. Methods: A case-control study was conducted to compare people with early KP (n=298), established KP (n=100) or no KP (n=94) at baseline. Multinomial logistic regression was used to estimate odds ratio (OR) and 95% confidence interval (CI) between groups adjusted for radiographic osteoarthritis (ROA) severity and other confounding factors. After one year 255 participants with early and established KP completed the followup questionnaire for changes in KP. Logistic regression with adjustment was used to determine predictors of KP worsening. Results: At baseline, effusion was associated with early (OR 2.64, 95%CI 1.57 to 4.45) and established KP (OR 5.07, 95%CI 2.74 to 9.38). Synovial hypertrophy was also associated with early (OR 5.43, 95%CI 2.12 to 13.92) and established KP (OR 13.27, 95%CI 4.97 to 35.43). The association with effusion diminished when adjusted for ROA. Power Doppler signal was uncommon (early KP 3%, established KP 2%, controls 0%). Baseline effusion predicted worsening of knee pain at one year (OR 1.95, 95% CI 1.05 to 3.64). However, after adjusting for ROA, the prediction was insignificant (aORs 0.95, 95%CI 0.44 to 2.02). Conclusion: US effusion and synovial hypertrophy are associated with KP, but only effusion predicts KP worsening. However, the association/prediction are not independent from ROA. Power Doppler signal is uncommon in people with KP. Further study is needed to understand whether synovitis is directly involved in different types of KP
    corecore