125 research outputs found

    A novel nucleoid-associated protein of Mycobacterium tuberculosis is a sequence homolog of GroEL

    Get PDF
    The Mycobacterium tuberculosis genome sequence reveals remarkable absence of many nucleoid-associated proteins (NAPs), such as HNS, Hfq or DPS. In order to characterize the nucleoids of M. tuberculosis, we have attempted to identify NAPs, and report an interesting finding that a chaperonin-homolog, GroEL1, is nucleoid associated. We report that M. tuberculosis GroEL1 binds DNA with low specificity but high affinity, suggesting that it might have naturally evolved to bind DNA. We are able to demonstrate that GroEL1 can effectively function as a DNA-protecting agent against DNase I or hydroxyl-radicals. Moreover, Atomic Force Microscopic studies reveal that GroEL1 can condense a large DNA into a compact structure. We also provide in vivo evidences that include presence of GroEL1 in purified nucleoids, in vivo crosslinking followed by Southern hybridizations and immunofluorescence imaging in M. tuberculosis confirming that GroEL1: DNA interactions occur in natural biological settings. These findings therefore reveal that M. tuberculosis GroEL1 has evolved to be associated with nucleoids

    Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner

    Get PDF
    Soluble karyopherins of the importin-β (impβ) family use RanGTP to transport cargos directionally through the nuclear pore complex (NPC). Whether impβ or RanGTP regulate the permeability of the NPC itself has been unknown. Here, we identify a stable pool of impβ at the NPC. A subpopulation of this pool is rapidly turned-over by RanGTP, likely at Nup153. Impβ, but not transportin-1 (TRN1), alters the pore's permeability in a Ran-dependent manner, suggesting that impβ is a functional component of the NPC. Upon reduction of Nup153 levels, inert cargos more readily equilibrate across the NPC yet active transport is impaired. When purified impβ or TRN1 are mixed with Nup153 in vitro, higher-order, multivalent complexes form. RanGTP dissolves the impβ•Nup153 complexes but not those of TRN1•Nup153. We propose that impβ and Nup153 interact at the NPC's nuclear face to form a Ran-regulated mesh that modulates NPC permeability

    A Full Suite of Histone and Histone Modifying Genes Are Transcribed in the Dinoflagellate Lingulodinium

    Get PDF
    BACKGROUND: Dinoflagellates typically lack histones and nucleosomes are not observed in DNA spreads. However, recent studies have shown the presence of core histone mRNA sequences scattered among different dinoflagellate species. To date, the presence of all components required for manufacturing and modifying nucleosomes in a single dinoflagellate species has not been confirmed. METHODOLOGY AND RESULTS: Analysis of a Lingulodinium transcriptome obtained by Illumina sequencing of mRNA shows several different copies of each of the four core histones as well as a suite of histone modifying enzymes and histone chaperone proteins. Phylogenetic analysis shows one of each Lingulodinium histone copies belongs to the dinoflagellate clade while the second is more divergent and does not share a common ancestor. All histone mRNAs are in low abundance (roughly 25 times lower than higher plants) and transcript levels do not vary over the cell cycle. We also tested Lingulodinium extracts for histone proteins using immunoblotting and LC-MS/MS, but were unable to confirm histone expression at the protein level. CONCLUSION: We show that all core histone sequences are present in the Lingulodinium transcriptome. The conservation of these sequences, even though histone protein accumulation remains below currently detectable levels, strongly suggests dinoflagellates possess histones

    From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later

    Get PDF
    Comparative genomics is the cornerstone of identification of gene functions. The immense number of living organisms precludes experimental identification of functions except in a handful of model organisms. The bacterial domain is split into large branches, among which the Firmicutes occupy a considerable space. Bacillus subtilis has been the model of Firmicutes for decades and its genome has been a reference for more than 10 years. Sequencing the genome involved more than 30 laboratories, with different expertises, in a attempt to make the most of the experimental information that could be associated with the sequence. This had the expected drawback that the sequencing expertise was quite varied among the groups involved, especially at a time when sequencing genomes was extremely hard work. The recent development of very efficient, fast and accurate sequencing techniques, in parallel with the development of high-level annotation platforms, motivated the present resequencing work. The updated sequence has been reannotated in agreement with the UniProt protein knowledge base, keeping in perspective the split between the paleome (genes necessary for sustaining and perpetuating life) and the cenome (genes required for occupation of a niche, suggesting here that B. subtilis is an epiphyte). This should permit investigators to make reliable inferences to prepare validation experiments in a variety of domains of bacterial growth and development as well as build up accurate phylogenies

    Stress-induced adaptive morphogenesis in bacteria

    Get PDF
    Bacteria thrive in virtually all environments. Like all other living organisms, bacteria may encounter various types of stresses, to which cells need to adapt. In this chapter, we describe how cells cope with stressful conditions and how this may lead to dramatic morphological changes. These changes may not only allow harmless cells to withstand environmental insults but can also benefit pathogenic bacteria by enabling them to escape from the immune system and the activity of antibiotics. A better understanding of stress-induced morphogenesis will help us to develop new approaches to combat such harmful pathogens.Microbial Biotechnolog

    Innovation in gene regulation: The case of chromatin computation

    Full text link

    J. Mol. Biol.

    No full text

    Structural Analysis of a Metazoan Nuclear Pore Complex Reveals of Fused Concentric Ring Architecture

    No full text
    The sole gateway for molecular exchange between the cytoplasm and the nucleus is the nuclear pore complex (NPC). This large supramolecular assembly mediates transport of cargo into and out of the nucleus and fuse the inner and outer nuclear membranes to form an aqueous translocation channel. The NPC is composed of eight proteinaceous asymmetric units forming a pseudo-8-fold symmetric passage. Due to its shear size, complexity, and plastic nature, dissecting the high-resolution three-dimensional structure of the NPC in its hydrated state is a formidable challenge. Toward this goal, we applied cryo-electron tomography to spread nuclear envelopes from Xenopus oocytes. To compensate for perturbations of the 8-fold symmetry of individual NPCs, we performed symmetry-independent asymmetric unit averaging of three-dimensional tomographic NPC volumes to eventually yield a refined model at 6.4 nm resolution. This approach revealed novel structural features, particularly in the spoke-ring complex and luminal domains. Fused concentric ring architecture of the spoke-ring complex was found along the translocation channel. Additionally, a comparison of the refined Xenopus model to that of its Dictyostelium homologue yielded similar pore diameters at the level of the three canonical rings, although the Xenopus NPC was found to be 30% taller than the Dictyostelium pore. This discrepancy is attributed primarily to the relatively low homology and different organization of some nucleoporins in the Dictyostelium genome as compared to that of vertebrates. Nevertheless, the experimental conditions impose a preferred axial orientation of the NPCs within spread Xenopus oocyte nuclear envelopes. This may at least in part explain the increased height of the reconstructed vertebrate NPCs compared to those obtained from tomographic reconstruction of intact Dictyostelium nuclei

    Curr. Opin. Struct. Biol.

    No full text
    corecore