5,499 research outputs found

    Photon orbital angular momentum and torque metrics for single telescopes and interferometers

    Full text link
    Context. Photon orbital angular momentum (POAM) is normally invoked in a quantum mechanical context. It can, however, also be adapted to the classical regime, which includes observational astronomy. Aims. I explain why POAM quantities are excellent metrics for describing the end-to-end behavior of astronomical systems. To demonstrate their utility, I calculate POAM probabilities and torques from holography measurements of EVLA antenna surfaces. Methods. With previously defined concepts and calculi, I present generic expressions for POAM spectra, total POAM, torque spectra, and total torque in the image plane. I extend these functional forms to describe the specific POAM behavior of single telescopes and interferometers. Results. POAM probabilities of spatially uncorrelated astronomical sources are symmetric in quantum number. Such objects have zero intrinsic total POAM on the celestial sphere, which means that the total POAM in the image plane is identical to the total torque induced by aberrations within propagation media & instrumentation. The total torque can be divided into source- independent and dependent components, and the latter can be written in terms of three illustrative forms. For interferometers, complications arise from discrete sampling of synthesized apertures, but they can be overcome. POAM also manifests itself in the apodization of each telescope in an array. Holography of EVLA antennas observing a point source indicate that ~ 10% of photons in the n = 0 state are torqued to n != 0 states. Conclusions. POAM quantities represent excellent metrics for characterizing instruments because they are used to simultaneously describe amplitude and phase aberrations. In contrast, Zernike polynomials are just solutions of a differential equation that happen to ~ correspond to specific types of aberrations and are typically employed to fit only phases

    Towards realistic simulations of QED cascades: non-ideal laser and electron seeding effects

    Full text link
    A number of analytical and numerical studies has been performed to investigate the onset and the development of QED cascades in the collision of two counterpropagating laser pulses as a function of the laser intensity. However, it has been recently demonstrated [M. Tamburini et al., Sci. Rep. 7, 5694 (2017)] that the onset of QED cascades is also strongly influenced by the structure of the laser pulses, such as the laser pulse waist radius. Here we investigate how QED cascades are affected by: (a) the laser pulse duration, (b) the presence of a relative delay for the peak of the laser pulses to reach the focus, (c) the existence of a mismatch between the laser focal axis of the two laser pulses. This is especially important as, in realistic laboratory conditions, fluctuations may arise in the temporal and point stability of the lasers.Comment: 10 pages, 5 figures, 2 tables. Accepted for publication in Physics of Plasma

    Urban Sensibility of Landscape Structures in Italy General Characteristics and Local Details

    Get PDF
    Recently the conservation policies in Europe are considering the problem of the urban increasing in terms of soil destroyed and ecosystem fragmentation effects. In Italy this phenomena are becoming particularly important if we consider it at national level, but also at regional level. The paper has the goal to show some data relative to the distribution and the impact of urban surfaces on the large landscape national units, comparing the values among the units kind. Moreover will be implemented the data relative to some regional situation (Lazio, Marche, Umbria) of the Italian peninsula for having the indication about different environmental conditions as, for example, coastal areas, mountain areas or hill areas or also flat areas and different morphological structures. These data will be compare with other territorial characteristics, as the protected areas distribution and the biopermeability areas distribution. The knowledge of these information is very important for the planning action because it is possible to obtain, by means particular GIS models, indications about the urban sensibility of the different land parts in the future.

    Assessment of the Maltese environmental matrix to define the future monitoring strategy

    Get PDF
    Chapter 16As a member of the EU and of the international community, Malta has important obligations to report on the state of the environment and the effectiveness of policy measures addressing particular concerns, such as pollution (Regional Environmental Center, 2008). Failure to collect reliable and up-to-date environmental data would make Malta exposed to various environmental pressures due to poorly informed policy decisions, which could eventually also lead to economic implications (European Commission, 2014a). Under this context Malta is in the process of implementing the EU legislative framework regarding the environmental themes of air, water, radiation and soil. Prior to the implementation of the project “Development of environmental monitoring strategy and environmental monitoring baseline surveys”, air and water data from the Maltese environmental network were already available, though data coverage presented some lacunas, whereas radiation and soil network system was not in place, hence minimum baseline data was available. Therefore, the long term monitoring strategic proposal discussed in this article has been designed as a primary tool to improve the state of the environment as well as to be in compliance with the EU Directives related with nature conservation.peer-reviewe

    Giant collimated gamma-ray flashes

    Get PDF
    Bright sources of high energy electromagnetic radiation are widely employed in fundamental research as well as in industry and medicine. This steadily growing interest motivated the construction of several facilities aiming at the realisation of sources of intense X- and gamma-ray pulses. To date, free electron lasers and synchrotrons provide intense sources of photons with energies up to 10-100 keV. Facilities under construction based on incoherent Compton back scattering of an optical laser pulse off an electron beam are expected to yield photon beams with energy up to 19.5 MeV and peak brilliance in the range 1020^{20}-1023^{23} photons s1^{-1} mrad2^{-2} mm2^{-2} per 0.1% bandwidth. Here, we demonstrate a novel mechanism based on the strongly amplified synchrotron emission which occurs when a sufficiently dense electron beam interacts with a millimetre thickness solid target. For electron beam densities exceeding approximately 3\times10^{19}\text{ cm^{-3}} filamentation instability occurs with the self-generation of 107^{7}-108^{8} gauss magnetic fields where the electrons of the beam are trapped. This results into a giant amplification of synchrotron emission with the production of collimated gamma-ray pulses with peak brilliance above 102510^{25} photons s1^{-1} mrad2^{-2} mm2^{-2} per 0.1% bandwidth and photon energies ranging from 200 keV up to several hundreds MeV. These findings pave the way to compact, high-repetition-rate (kHz) sources of short (30 fs), collimated (mrad) and high flux (>1012>10^{12} photons/s) gamma-ray pulses.Comment: Full-text access to a view-only version of the published paper by the following SharedIt link: https://rdcu.be/LGtC This is part of the Springer Nature Content Sharing Initiative (https://www.springernature.com/gp/researchers/sharedit). Enhanced PDF features such as annotation tools, one-click supplements, citation file exports and article metrics are freely availabl

    On the (2,3)-generation of the finite symplectic groups

    Full text link
    This paper is a new important step towards the complete classification of the finite simple groups which are (2,3)(2,3)-generated. In fact, we prove that the symplectic groups Sp2n(q)Sp_{2n}(q) are (2,3)(2,3)-generated for all n4n\geq 4. Because of the existing literature, this result implies that the groups PSp2n(q)PSp_{2n}(q) are (2,3)(2,3)-generated for all n2n\geq 2, with the exception of PSp4(2f)PSp_4(2^f) and PSp4(3f)PSp_4(3^f)

    Tailoring Dielectric Properties of Multilayer Composites Using Spark Plasma Sintering

    Get PDF
    A straightforward and simple way to produce well-densified ferroelectric ceramic composites with a full control of both architecture and properties using spark plasma sintering (SPS) is proposed. SPS main outcome is indeed to obtain high densification at relatively low temperatures and short treatment times thus limiting interdiffusion in multimaterials. Ferroelectric/dielectric (BST64/MgO/BST64) multilayer ceramic densified at 97% was obtained, with unmodified Curie temperature, a stack dielectric constant reaching 600, and dielectric losses dropping down to 0.5%, at room-temperature. This result ascertains SPS as a relevant tool for the design of functional materials with tailored properties
    corecore