9 research outputs found

    Efficient construction of producer cell lines for a SIN lentiviral vector for SCID-X1 gene therapy by concatemeric array transfection

    No full text
    Retroviral vectors containing internal promoters, chromatin insulators, and self-inactivating (SIN) long terminal repeats (LTRs) may have significantly reduced genotoxicity relative to the conventional retroviral vectors used in recent, otherwise successful clinical trials. Large-scale production of such vectors is problematic, however, as the introduction of SIN vectors into packaging cells cannot be accomplished with the traditional method of viral transduction. We have derived a set of packaging cell lines for HIV-based lentiviral vectors and developed a novel concatemeric array transfection technique for the introduction of SIN vector genomes devoid of enhancer and promoter sequences in the LTR. We used this method to derive a producer cell clone for a SIN lentiviral vector expressing green fluorescent protein, which when grown in a bioreactor generated more than 20 L of supernatant with titers above 107 transducing units (TU) per milliliter. Further refinement of our technique enabled the rapid generation of whole populations of stably transformed cells that produced similar titers. Finally, we describe the construction of an insulated, SIN lentiviral vector encoding the human interleukin 2 receptor common γ chain (IL2RG) gene and the efficient derivation of cloned producer cells that generate supernatants with titers greater than 5 × 107 TU/mL and that are suitable for use in a clinical trial for X-linked severe combined immunodeficiency (SCID-X1)

    Methods for Gene Transfer to the Central Nervous System

    No full text

    In vivo methods for acute modulation of gene expression in the central nervous system

    Get PDF
    Accurate and timely expression of specific genes guarantees the healthy development and function of the brain. Indeed, variations in the correct amount or timing of gene expression lead to improper development and/or pathological conditions. Almost forty years after the first successful gene transfection in in vitro cell cultures, it is currently possible to regulate gene expression in an area-specific manner at any step of central nervous system development and in adulthood in experimental animals in vivo, even overcoming the very poor accessibility of the brain. Here, we will review the diverse approaches for acute gene transfer in vivo, highlighting their advantages and disadvantages with respect to the efficiency and specificity of transfection as well as to brain accessibility. In particular, we will present well-established chemical, physical and virus-based approaches suitable for different animal models, pointing out their current and future possible applications in basic and translational research as well as in gene therapy
    corecore