36 research outputs found
A two component jet model for the X-ray afterglow flat segment in short GRB 051221A
In the double neutron star merger or neutron star-black hole merger model for
short GRBs, the outflow launched might be mildly magnetized and neutron rich.
The magnetized neutron-rich outflow will be accelerated by the magnetic and
thermal pressure and may form a two component jet finally, as suggested by
Vlahakis, Peng & K\"{o}nigl (2003). We show in this work that such a two
component jet model could well reproduce the multi-wavelength afterglow
lightcurves, in particular the X-ray flat segment, of short GRB 051221A. In
this model, the central engine need not to be active much longer than the
prompt ray emission.Comment: 11 pages, 2 figure; Accepted for publication by ApJ
Is GRB 050904 a super-long burst?
By considering synchrotron radiative process in the internal shock model and
assuming that all internal shocks are nearly equally energetic, we analyze the
gamma-ray burst (GRB) emission at different radii corresponding to different
observed times. We apply this model to GRB 050904 and find that our analytical
results can provide a natural explanation for the multi-band observations of
GRB 050904. This suggests that the X-ray flare emission and the optical
emission of this burst could have originated from internal shocks being due to
collisions among nearly-equally-energetic shells ejected from the central
engine. Thus GRB 050904 appears to be a burst with super-long central engine
activity.Comment: 16 pages, 4 figure. Submitted on Oct. 21, 2005, accepted by Ap
Early optical afterglow lightcurves of neutron-fed Gamma-ray bursts
In this paper, within the popular internal shock scenario of GRBs, we
calculate the early optical afterglow lightcurves of a neutron-fed GRB fireball
for different assumed neutron fractions in the fireball and for both ISM- and
wind-interaction models. The cases for both long and short GRBs are considered.
We show that as long as the neutron fraction is significant (e.g. the number of
neutrons is comparable to that of protons), rich afterglow signatures would
show up. For a constant density (ISM) model, a neutron-rich early afterglow is
characterized by a slowly rising lightcurve followed by a sharp re-brightening
bump caused by collision between the leading neutron decay trail ejecta and the
trailing ion ejecta. For a massive star stellar-wind model, the neutron-rich
early afterglow shows an extended plateau lasting for about 100 seconds before
the lightcurve starts to decay. The plateau is mainly attributed to the
emission from the unshocked neutron decay trail. When the overlapping of the
initial prompt rays with the shocks and the trail is important, as is
common for the wind model and is also possible in the ISM model under some
conditions, the IC cooling effect suppresses the very early optical afterglow
significantly, making the neutron-fed signature dimmer. For short GRBs powered
by compact star mergers, a neutron-decay-induced step-like re-brightening is
predicted, although the amplitude is not large. All these neutron-fed
signatures are likely detectable by the Ultraviolet Optical Telescope (UVOT) on
board the {\em Swift} observatory if GRB fireballs are indeed baryonic and
neutron-rich. Close monitoring of early afterglows from 10s to 1000s of
seconds, when combined with detailed theoretical modeling, could be used to
potentially diagnose the existence of the neutron component in GRB fireballs.Comment: 17 pages (6 figures), accepted for publication in ApJ. Several
figures are revised, the IC cooling due to the prompt gamma-rays overlap with
the shocked regions (stellar wind model) has been taken into account. The
possible evidence for the neutron-rich internal shocks (i.e., the prompt
optical and near IR flash accompanying GRB 041219a) has been mentioned
briefl
GRB Fireball Physics: Prompt and Early Emission
We review the fireball shock model of gamma-ray burst prompt and early
afterglow emission in light of rapid follow-up measurements made and enabled by
the multi-wavelength Swift satellite. These observations are leading to a
reappraisal and expansion of the previous standard view of the GRB and its
fireball. New information on the behavior of the burst and afterglow on minutes
to hour timescales has led, among other results, to the discovery and follow-up
of short GRB afterglows, the opening up of the z>6 redshift range, and the
first prompt multi-wavelength observations of a long GRB-supernova. We discuss
the salient observational results and some associated theoretical issues.Comment: 23 pages. Published in the New Journal of Physics Focus Issue, "Focus
on Gamma-Ray Bursts in the Swift Era" (Eds. D. H. Hartmann, C. D. Dermer & J.
Greiner). V2: Minor change
Gamma-Ray Bursts
Gamma-ray bursts are the most luminous explosions in the Universe, and their
origin and mechanism are the focus of intense research and debate. More than
three decades after their discovery, and after pioneering breakthroughs from
space and ground experiments, their study is entering a new phase with the
recently launched Swift satellite. The interplay between these observations and
theoretical models of the prompt gamma ray burst and its afterglow is reviewed.Comment: To appear in Rep. Prog. Phys., 74 pages, 11 figures, uses iopart.cls
macros; revisions and updated reference
Modeling the high-energy emission in GRB 110721A and implications on the early multiwavelength and polarimetric observations
GRB 110721A was detected by the Gamma-ray Burst Monitor and the Large Area
Telescope (LAT) onboard the Fermi satellite and the Gamma-ray Burst Polarimeter
onboard the IKAROS solar mission. Previous analysis done of this burst showed:
i) a linear polarization signal with position angle stable () and high degree of , ii) an extreme peak
energy of a record-breaking at 152 MeV, and iii) a subdominant prompt
thermal component observed right after the onset of this burst. In this paper,
the LAT data around the reported position of GRB 110721A are analysed with the
most recent software and then, the LAT light curve above 100 MeV was obtained.
The LAT light curve is modelled in terms of adiabatic early-afterglow external
shocks when the outflow propagates into a stellar wind. Additionally, we
discuss the possible origins and also study the implications of the
early-afterglow external shocks on the extreme peak energy observed at 152
MeV, the polarization observations and the subdominant prompt thermal
component.Comment: 9 pages and one figure. Accepted for publication in Ap
Implementation and testing of the first prompt search for gravitational wave transients with electromagnetic counterparts
Aims. A transient astrophysical event observed in both gravitational wave
(GW) and electromagnetic (EM) channels would yield rich scientific rewards. A
first program initiating EM follow-ups to possible transient GW events has been
developed and exercised by the LIGO and Virgo community in association with
several partners. In this paper, we describe and evaluate the methods used to
promptly identify and localize GW event candidates and to request images of
targeted sky locations.
Methods. During two observing periods (Dec 17 2009 to Jan 8 2010 and Sep 2 to
Oct 20 2010), a low-latency analysis pipeline was used to identify GW event
candidates and to reconstruct maps of possible sky locations. A catalog of
nearby galaxies and Milky Way globular clusters was used to select the most
promising sky positions to be imaged, and this directional information was
delivered to EM observatories with time lags of about thirty minutes. A Monte
Carlo simulation has been used to evaluate the low-latency GW pipeline's
ability to reconstruct source positions correctly.
Results. For signals near the detection threshold, our low-latency algorithms
often localized simulated GW burst signals to tens of square degrees, while
neutron star/neutron star inspirals and neutron star/black hole inspirals were
localized to a few hundred square degrees. Localization precision improves for
moderately stronger signals. The correct sky location of signals well above
threshold and originating from nearby galaxies may be observed with ~50% or
better probability with a few pointings of wide-field telescopes.Comment: 17 pages. This version (v2) includes two tables and 1 section not
included in v1. Accepted for publication in Astronomy & Astrophysic
Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger.
The merger of two neutron stars is predicted to give rise to three major detectable phenomena: a short burst of γ-rays, a gravitational-wave signal, and a transient optical-near-infrared source powered by the synthesis of large amounts of very heavy elements via rapid neutron capture (the r-process). Such transients, named 'macronovae' or 'kilonovae', are believed to be centres of production of rare elements such as gold and platinum. The most compelling evidence so far for a kilonova was a very faint near-infrared rebrightening in the afterglow of a short γ-ray burst at redshift z = 0.356, although findings indicating bluer events have been reported. Here we report the spectral identification and describe the physical properties of a bright kilonova associated with the gravitational-wave source GW170817 and γ-ray burst GRB 170817A associated with a galaxy at a distance of 40 megaparsecs from Earth. Using a series of spectra from ground-based observatories covering the wavelength range from the ultraviolet to the near-infrared, we find that the kilonova is characterized by rapidly expanding ejecta with spectral features similar to those predicted by current models. The ejecta is optically thick early on, with a velocity of about 0.2 times light speed, and reaches a radius of about 50 astronomical units in only 1.5 days. As the ejecta expands, broad absorption-like lines appear on the spectral continuum, indicating atomic species produced by nucleosynthesis that occurs in the post-merger fast-moving dynamical ejecta and in two slower (0.05 times light speed) wind regions. Comparison with spectral models suggests that the merger ejected 0.03 to 0.05 solar masses of material, including high-opacity lanthanides
A trio of gamma-ray burst supernovae: GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu
We present optical and near-infrared (NIR) photometry for three gamma-ray burst supernovae (GRB-SNe): GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. For GRB 130215A/SN 2013ez, we also present optical spectroscopy at t − t0 = 16.1 d, which covers rest-frame 3000–6250 Å. Based on Fe ii λ5169 and Si ii λ6355, our spectrum indicates an unusually low expansion velocity of ~4000–6350 km s-1, the lowest ever measured for a GRB-SN. Additionally, we determined the brightness and shape of each accompanying SN relative to a template supernova (SN 1998bw), which were used to estimate the amount of nickel produced via nucleosynthesis during each explosion. We find that our derived nickel masses are typical of other GRB-SNe, and greater than those of SNe Ibc that are not associated with GRBs. For GRB 130831A/SN 2013fu, we used our well-sampled R-band light curve (LC) to estimate the amount of ejecta mass and the kinetic energy of the SN, finding that these too are similar to other GRB-SNe. For GRB 130215A, we took advantage of contemporaneous optical/NIR observations to construct an optical/NIR bolometric LC of the afterglow. We fit the bolometric LC with the millisecond magnetar model of Zhang & Mészáros (2001, ApJ, 552, L35), which considers dipole radiation as a source of energy injection to the forward shock powering the optical/NIR afterglow. Using this model we derive an initial spin period of P = 12 ms and a magnetic field of B = 1.1 × 1015 G, which are commensurate with those found for proposed magnetar central engines of other long-duration GRBs
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta