1,045 research outputs found

    Looking Into the Fireball: ROTSE-III and Swift Observations of Early GRB Afterglows

    Get PDF
    We report on a complete set of early optical afterglows of gamma-ray bursts (GRBs) obtained with the ROTSE-III telescope network from March 2005 through June 2007. This set is comprised of 12 afterglows with early optical and Swift/XRT observations, with a median ROTSE-III response time of 45 s after the start of gamma-ray emission (8 s after the GCN notice time). These afterglows span four orders of magnitude in optical luminosity, and the contemporaneous X-ray detections allow multi-wavelength spectral analysis. Excluding X-ray flares, the broadband synchrotron spectra show that the optical and X-ray emission originate in a common region, consistent with predictions of the external forward shock in the fireball model. However, the fireball model is inadequate to predict the temporal decay indices of the early afterglows, even after accounting for possible long-duration continuous energy injection. We find that the optical afterglow is a clean tracer of the forward shock, and we use the peak time of the forward shock to estimate the initial bulk Lorentz factor of the GRB outflow, and find 100<Gamma_0<1000, consistent with expectations.Comment: 31 pages, 5 figures, submitted to Ap

    redMaPPer III: A Detailed Comparison of the Planck 2013 and SDSS DR8 RedMaPPer Cluster Catalogs

    Full text link
    We compare the Planck Sunyaev-Zeldovich (SZ) cluster sample (PSZ1) to the Sloan Digital Sky Survey (SDSS) redMaPPer catalog, finding that all Planck clusters within the redMaPPer mask and within the redshift range probed by redMaPPer are contained in the redMaPPer cluster catalog. These common clusters define a tight scaling relation in the richness-SZ mass (λ\lambda--MSZM_{SZ}) plane, with an intrinsic scatter in richness of σλMSZ=0.266±0.017\sigma_{\lambda|M_{SZ}} = 0.266 \pm 0.017. The corresponding intrinsic scatter in true cluster halo mass at fixed richness is 21%\approx 21\%. The regularity of this scaling relation is used to identify failures in both the redMaPPer and Planck cluster catalogs. Of the 245 galaxy clusters in common, we identify three failures in redMaPPer and 36 failures in the PSZ1. Of these, at least 12 are due to clusters whose optical counterpart was correctly identified in the PSZ1, but where the quoted redshift for the optical counterpart in the external data base used in the PSZ1 was incorrect. The failure rates for redMaPPer and the PSZ1 are 1.2%1.2\% and 14.7%14.7\% respectively, or 9.8% in the PSZ1 after subtracting the external data base errors. We have further identified 5 PSZ1 sources that suffer from projection effects (multiple rich systems along the line-of-sight of the SZ detection) and 17 new high redshift (z0.6z\gtrsim 0.6) cluster candidates of varying degrees of confidence. Should all of the high-redshift cluster candidates identified here be confirmed, we will have tripled the number of high redshift Planck clusters in the SDSS region. Our results highlight the power of multi-wavelength observations to identify and characterize systematic errors in galaxy cluster data sets, and clearly establish photometric data both as a robust cluster finding method, and as an important part of defining clean galaxy cluster samples.Comment: comments welcom

    Constraining the Mass-Richness Relationship of redMaPPer Clusters with Angular Clustering

    Full text link
    The potential of using cluster clustering for calibrating the mass-observable relation of galaxy clusters has been recognized theoretically for over a decade. Here, we demonstrate the feasibility of this technique to achieve high precision mass calibration using redMaPPer clusters in the Sloan Digital Sky Survey North Galactic Cap. By including cross-correlations between several richness bins in our analysis we significantly improve the statistical precision of our mass constraints. The amplitude of the mass-richness relation is constrained to 7% statistical precision. However, the error budget is systematics dominated, reaching an 18% total error that is dominated by theoretical uncertainty in the bias-mass relation for dark matter halos. We perform a detailed treatment of the effects of assembly bias on our analysis, finding that the contribution of such effects to our parameter uncertainties is somewhat greater than that of measurement noise. We confirm the results from Miyatake et al. (2015) that the clustering amplitude of redMaPPer clusters depends on galaxy concentration, and provide additional evidence in support of this effect being due to some form of assembly bias. The results presented here demonstrate the power of cluster clustering for mass calibration and cosmology provided the current theoretical systematics can be ameliorated.Comment: 18 pages, 9 figure

    Galaxy Cluster Mass Estimation from Stacked Spectroscopic Analysis

    Full text link
    We use simulated galaxy surveys to study: i) how galaxy membership in redMaPPer clusters maps to the underlying halo population, and ii) the accuracy of a mean dynamical cluster mass, Mσ(λ)M_\sigma(\lambda), derived from stacked pairwise spectroscopy of clusters with richness λ\lambda. Using  ⁣130,000\sim\! 130,000 galaxy pairs patterned after the SDSS redMaPPer cluster sample study of Rozo et al. (2015 RMIV), we show that the pairwise velocity PDF of central--satellite pairs with mi<19m_i < 19 in the simulation matches the form seen in RMIV. Through joint membership matching, we deconstruct the main Gaussian velocity component into its halo contributions, finding that the top-ranked halo contributes 60%\sim 60\% of the stacked signal. The halo mass scale inferred by applying the virial scaling of Evrard et al. (2008) to the velocity normalization matches, to within a few percent, the log-mean halo mass derived through galaxy membership matching. We apply this approach, along with mis-centering and galaxy velocity bias corrections, to estimate the log-mean matched halo mass at z=0.2z=0.2 of SDSS redMaPPer clusters. Employing the velocity bias constraints of Guo et al. (2015), we find ln(M200c)λ=ln(M30)+αmln(λ/30)\langle \ln(M_{200c})|\lambda \rangle = \ln(M_{30}) + \alpha_m \ln(\lambda/30) with M30=1.56±0.35×1014MM_{30} = 1.56 \pm 0.35 \times 10^{14} M_\odot and αm=1.31±0.06stat±0.13sys\alpha_m = 1.31 \pm 0.06_{stat} \pm 0.13_{sys}. Systematic uncertainty in the velocity bias of satellite galaxies overwhelmingly dominates the error budget.Comment: 14 pages, 7 figure

    Intrinsic Alignment in redMaPPer clusters -- II. Radial alignment of satellites toward cluster centers

    Full text link
    We study the orientations of satellite galaxies in redMaPPer clusters constructed from the Sloan Digital Sky Survey at 0.1<z<0.350.1<z<0.35 to determine whether there is any preferential tendency for satellites to point radially toward cluster centers. We analyze the satellite alignment (SA) signal based on three shape measurement methods (re-Gaussianization, de Vaucouleurs, and isophotal shapes), which trace galaxy light profiles at different radii. The measured SA signal depends on these shape measurement methods. We detect the strongest SA signal in isophotal shapes, followed by de Vaucouleurs shapes. While no net SA signal is detected using re-Gaussianization shapes across the entire sample, the observed SA signal reaches a statistically significant level when limiting to a subsample of higher luminosity satellites. We further investigate the impact of noise, systematics, and real physical isophotal twisting effects in the comparison between the SA signal detected via different shape measurement methods. Unlike previous studies, which only consider the dependence of SA on a few parameters, here we explore a total of 17 galaxy and cluster properties, using a statistical model averaging technique to naturally account for parameter correlations and identify significant SA predictors. We find that the measured SA signal is strongest for satellites with the following characteristics: higher luminosity, smaller distance to the cluster center, rounder in shape, higher bulge fraction, and distributed preferentially along the major axis directions of their centrals. Finally, we provide physical explanations for the identified dependences, and discuss the connection to theories of SA.Comment: 25 pages, 16 figures, 7 tables, accepted to MNRAS. Main statistical analysis tool changed, with the results remain simila

    Swift monitoring of Cygnus X-2: investigating the NUV-X-ray connection

    Full text link
    The neutron star X-ray binary (NSXRB) Cygnus X-2 was observed by the Swift satellite 51 times over a 4 month period in 2008 with the XRT, UVOT, and BAT instruments. During this campaign, we observed Cyg X-2 in all three branches of the Z track (horizontal, normal, and flaring branches). We find that the NUV emission is uncorrelated with the soft X-ray flux detected with the XRT, and is anticorrelated with the BAT X-ray flux and the hard X-ray color. The observed anticorrelation is inconsistent with simple models of reprocessing as the source of the NUV emission. The anticorrelation may be a consequence of the high inclination angle of Cyg X-2, where NUV emission is preferentially scattered by a corona that expands as the disk is radiatively heated. Alternatively, if the accretion disk thickens as Cyg X-2 goes down the normal branch toward the flaring branch, this may be able to explain the observed anticorrelation. In these models the NUV emission may not be a good proxy for m˙\dot m in the system. We also discuss the implications of using Swift/XRT to perform spectral modeling of the continuum emission of NSXRBs.Comment: 10 pages, 8 figures. ApJ Accepte
    corecore