7,082 research outputs found

    Nuclear absorption and emission in the AGN merger NGC 6240: the hard X-ray view

    Get PDF
    We present the analysis of four NuSTAR observations of the luminous infrared galaxy merger NGC 6240, hosting a close pair of highly obscured active galactic nuclei (AGN). Over a period of about two years, the source exhibits hard X-ray variability of the order of 20 per cent, peaking around 20 keV. When the two AGN are resolved with Chandra, column densities in the range NH∼1−2×1024N_\textrm{H} \sim 1-2 \times 10^{24} cm−2^{-2} are estimated for both of them. The exact values are hard to determine, as they appear to depend on aspects that are sometimes overlooked in Compton-thick objects, such as the covering factor of the absorber, iron abundance, and the contamination in the Fe-K band from foreground hot-gas emission. Nearly spherical covering and slightly subsolar iron abundance are preferred in this case. While the southern nucleus is suggested to be intrinsically more powerful, as also implied by the mid-IR and 2-10 keV brightness ratios, solutions involving a similar X-ray luminosity of the two AGN cannot be ruled out. The observed variability is rather limited compared to the one revealed by the Swift/BAT light curve, and it can be fully explained by changes in the continuum flux from the two AGN, without requiring significant column density variations. NGC 6240 is hereby confirmed to represent a unique opportunity to investigate the X-ray (and broad-band) properties of massive galaxy mergers, which were much more frequent in the early Universe.Comment: 12 pages, 9 figures, 4 tables. Accepted for publication on MNRA

    Fluctuations of large-scale jets in the stochastic 2D Euler equation

    Get PDF
    Two-dimensional turbulence in a rectangular domain self-organises into large-scale unidirectional jets. While several results are present to characterize the mean jets velocity profile, much less is known about the fluctuations. We study jets dynamics in the stochastically forced two-dimensional Euler equations. In the limit where the average jets velocity profile evolves slowly with respect to turbulent fluctuations, we employ a multi-scale (kinetic theory) approach, which relates jet dynamics to the statistics of Reynolds stresses. We study analytically the Gaussian fluctuations of Reynolds stresses and predict the spatial structure of the jets velocity covariance. Our results agree qualitatively well with direct numerical simulations, clearly showing that the jets velocity profile are enhanced away from the stationary points of the average velocity profile. A numerical test of our predictions at quantitative level seems out of reach at the present day

    Hairy Black Holes in Massive Gravity: Thermodynamics and Phase Structure

    Full text link
    The thermodynamic properties of a static and spherically symmetric hairy black hole solution arising in massive gravity with spontaneous Lorentz breaking are investigated. The analysis is carried out by enclosing the black hole in a spherical cavity whose surface is maintained at a fixed temperature TT. It turns out that the ensemble is well-defined only if the "hair" parameter QQ characterizing the solution is conserved. Under this condition we compute some relevant thermodynamic quantities, such as the thermal energy and entropy, and we study the stability and phase structure of the ensemble. In particular, for negative values of the hair parameter, the phase structure is isomorphic to the one of Reissner-Nordstrom black holes in the canonical ensemble. Moreover, the phase-diagram in the plan (Q,TQ,T) has a line of first-order phase transition that at a critical value of QQ terminates in a second-order phase transition. Below this line the dominant phase consists of small, cold black holes that are long-lived and may thus contribute much more to the energy density of the Universe than what is observationally allowed for radiating black holes.Comment: 12 pages, 11 figures, relevant references added, match the published versio

    Solvable model of a self-gravitating system

    Full text link
    We introduce and discuss an effective model of a self-gravitating system whose equilibrium thermodynamics can be solved in both the microcanonical and the canonical ensemble, up to a maximization with respect to a single variable. Such a model can be derived from a model of self-gravitating particles confined on a ring, referred to as the self-gravitating ring (SGR) model, allowing a quantitative comparison between the thermodynamics of the two models. Despite the rather crude approximations involved in its derivation, the effective model compares quite well with the SGR model. Moreover, we discuss the relation between the effective model presented here and another model introduced by Thirring forty years ago. The two models are very similar and can be considered as examples of a class of minimal models of self-gravitating systems.Comment: 21 pages, 6 figures; submitted to JSTAT for the special issue on long-range interaction

    Simulating Cellular Communications in Vehicular Networks: Making SimuLTE Interoperable with Veins

    Get PDF
    The evolution of cellular technologies toward 5G progressively enables efficient and ubiquitous communications in an increasing number of fields. Among these, vehicular networks are being considered as one of the most promising and challenging applications, requiring support for communications in high-speed mobility and delay-constrained information exchange in proximity. In this context, simulation frameworks under the OMNeT++ umbrella are already available: SimuLTE and Veins for cellular and vehicular systems, respectively. In this paper, we describe the modifications that make SimuLTE interoperable with Veins and INET, which leverage the OMNeT++ paradigm, and allow us to achieve our goal without any modification to either of the latter two. We discuss the limitations of the previous solution, namely VeinsLTE, which integrates all three in a single framework, thus preventing independent evolution and upgrades of each building block.Comment: Published in: A. Foerster, A. Udugama, A. Koensgen, A. Virdis, M. Kirsche (Eds.), Proc. of the 4th OMNeT++ Community Summit, University of Bremen - Germany - September 7-8, 201
    • …
    corecore