766 research outputs found

    What can we learn about neutron stars from gravity-wave observations?

    Get PDF
    In the next few years, the first detections of gravity-wave signals using Earth-based interferometric detectors will begin to provide precious new information about the structure and dynamics of compact bodies such as neutron stars. The intrinsic weakness of gravity-wave signals requires a proactive approach to modeling the prospective sources and anticipating the shape of the signals that we seek to detect. Full-blown 3-D numerical simulations of the sources are playing and will play an important role in planning the gravity-wave data-analysis effort. I review some recent analytical and numerical work on neutron stars as sources of gravity waves.Comment: Revtex 4, 3 EPS figures. To appear in the proceedings of the 25th J. Hopkins Workshop on Current Problems in Particle Theory; 2001: A Relativistic Spacetime Odyssey, Florence, Sep. 3--5, 200

    Ephemeral point-events: is there a last remnant of physical objectivity?

    Get PDF
    For the past two decades, Einstein's Hole Argument (which deals with the apparent indeterminateness of general relativity due to the general covariance of the field equations) and its resolution in terms of Leibniz equivalence (the statement that Riemannian geometries related by active diffeomorphisms represent the same physical solution) have been the starting point for a lively philosophical debate on the objectivity of the point-events of space-time. It seems that Leibniz equivalence makes it impossible to consider the points of the space-time manifold as physically individuated without recourse to dynamical individuating fields. Various authors have posited that the metric field itself can be used in this way, but nobody so far has considered the problem of explicitly distilling the metrical fingerprint of point-events from the gauge-dependent components of the metric field. Working in the Hamiltonian formulation of general relativity, and building on the results of Lusanna and Pauri (2002), we show how Bergmann and Komar's intrinsic pseudo-coordinates (based on the value of curvature invariants) can be used to provide a physical individuation of point-events in terms of the true degrees of freedom (the Dirac observables) of the gravitational field, and we suggest how this conceptual individuation could in principle be implemented with a well-defined empirical procedure. We argue from these results that point-events retain a significant kind of physical objectivity.Comment: LaTeX, natbib, 34 pages. Final journal versio

    Marzke-Wheeler coordinates for accelerated observers in special relativity

    Get PDF
    In special relativity, the definition of coordinate systems adapted to generic accelerated observers is a long-standing problem, which has found unequivocal solutions only for the simplest motions. We show that the Marzke-Wheeler construction, an extension of the Einstein synchronization convention, produces accelerated systems of coordinates with desirable properties: (a) they reduce to Lorentz coordinates in a neighborhood of the observers' world-lines; (b) they index continuously and completely the causal envelope of the world-line (that is, the intersection of its causal past and its causal future: for well-behaved world-lines, the entire space-time). In particular, Marzke-Wheeler coordinates provide a smooth and consistent foliation of the causal envelope of any accelerated observer into space-like surfaces. We compare the Marzke-Wheeler procedure with other definitions of accelerated coordinates; we examine it in the special case of stationary motions, and we provide explicit coordinate transformations for uniformly accelerated and uniformly rotating observers. Finally, we employ the notion of Marzke-Wheeler simultaneity to clarify the relativistic paradox of the twins, by pinpointing the local origin of differential aging.Comment: AmsLaTeX, 22 pages, 8 eps figures; revised, references added. To appear in Foundations of Physics Letters, October 200

    Detection template families for gravitational waves from the final stages of binary--black-hole inspirals: Nonspinning case

    Get PDF
    We investigate the problem of detecting gravitational waves from binaries of nonspinning black holes with masses m = 5--20 Msun, moving on quasicircular orbits, which are arguably the most promising sources for first-generation ground-based detectors. We analyze and compare all the currently available post--Newtonian approximations for the relativistic two-body dynamics; for these binaries, different approximations predict different waveforms. We then construct examples of detection template families that embed all the approximate models, and that could be used to detect the true gravitational-wave signal (but not to characterize accurately its physical parameters). We estimate that the fitting factor for our detection families is >~0.95 (corresponding to an event-rate loss <~15%) and we estimate that the discretization of the template family, for ~10^4 templates, increases the loss to <~20%.Comment: 58 pages, 38 EPS figures, final PRD version; small corrections to GW flux terms as per Blanchet et al., PRD 71, 129902(E)-129904(E) (2005
    corecore