2,544 research outputs found

    An interferometric seismic sensor: theoretical model and experimental performances

    Get PDF
    Laser Optical Interferometry has been introduced in different fields of research for applications requiring very high precision displacement measurements. We have applied optical interferometry for the solving the problem of amplitude and direction measurement of seismic waves. In particular we propose a Michelson Interferometer as a velocimeter with optical readout. In this work we demostrate that a simple array of two Michelson interferometer can be used as an effective seismic sensor to measure the velocity of ground motion. The sensitivity of such device should be delimited only by the enviromental parameter that can be monitored and controlled. A preliminary experimental test on this technique confirms the theoretical results: in fact there is a good agreement with a standard accelerometer for seismic application

    A chi-squared time-frequency discriminator for gravitational wave detection

    Full text link
    Searches for known waveforms in gravitational wave detector data are often done using matched filtering. When used on real instrumental data, matched filtering often does not perform as well as might be expected, because non-stationary and non-Gaussian detector noise produces large spurious filter outputs (events). This paper describes a chi-squared time-frequency test which is one way to discriminate such spurious events from the events that would be produced by genuine signals. The method works well only for broad-band signals. The case where the filter template does not exactly match the signal waveform is also considered, and upper bounds are found for the expected value of chi-squared.Comment: 18 pages, five figures, RevTex

    IIR Adaptive Filters for Detection of Gravitational Waves from Coalescing Binaries

    Full text link
    In this paper we propose a new strategy for gravitational waves detection from coalescing binaries, using IIR Adaptive Line Enhancer (ALE) filters. This strategy is a classical hierarchical strategy in which the ALE filters have the role of triggers, used to select data chunks which may contain gravitational events, to be further analyzed with more refined optimal techniques, like the the classical Matched Filter Technique. After a direct comparison of the performances of ALE filters with the Wiener-Komolgoroff optimum filters (matched filters), necessary to discuss their performance and to evaluate the statistical limitation in their use as triggers, we performed a series of tests, demonstrating that these filters are quite promising both for the relatively small computational power needed and for the robustness of the algorithms used. The performed tests have shown a weak point of ALE filters, that we fixed by introducing a further strategy, based on a dynamic bank of ALE filters, running simultaneously, but started after fixed delay times. The results of this global trigger strategy seems to be very promising, and can be already used in the present interferometers, since it has the great advantage of requiring a quite small computational power and can easily run in real-time, in parallel with other data analysis algorithms.Comment: Accepted at SPIE: "Astronomical Telescopes and Instrumentation". 9 pages, 3 figure

    A solution of linearized Einstein field equations in vacuum used for the detection of the stochastic background of gravitational waves

    Full text link
    A solution of linearized Einstein field equations in vacuum is given and discussed. First it is shown that, computing from our particular metric the linearized connections, the linearized Riemann tensor and the linearized Ricci tensor, the linearized Ricci tensor results equal to zero. Then the effect on test masses of our solution, which is a gravitational wave, is discussed. In our solution test masses have an apparent motion in the direction of propagation of the wave, while in the transverse direction they appear at rest. In this way it is possible to think that gravitational waves would be longitudinal waves, but, from careful investigation of this solution, it is shown that the tidal forces associated with gravitational waves act along the directions orthogonal to the direction of propagation of waves. The computation is first made in the long wavelengths approximation (wavelength much larger than the linear distances between test masses), then the analysis is generalized to all gravitational waves. In the last sections of this paper it is shown that the frequency dependent angular pattern of interferometers can be obtained from our solution and the total signal seen from an interferometer for the stochastic background of gravitational waves is computed.Comment: Definitive version published in Astroparticle Physic

    Calibration of advanced Virgo and reconstruction of the gravitational wave signal h(t) during the observing run O2

    Get PDF
    In August 2017, advanced Virgo joined advanced LIGO for the end of the O2 run, leading to the first gravitational waves detections with the three-detector network. This paper describes the advanced Virgo calibration and the gravitational wave strain h(t) reconstruction during O2. The methods are the same as the ones developed for the initial Virgo detector and have already been described in previous publications; this paper summarizes the differences and emphasis is put on estimating systematic uncertainties. Three versions of the h(t) signal have been computed for the Virgo O2 run, an online version and two post-run reprocessed versions with improved detector calibration and reconstruction algorithm. A photon calibrator has been used to establish the sign of h(t) and to make an independent partial cross-check of the systematic uncertainties. The uncertainties reached for the latest h(t) version are 5.1% in amplitude, 40 mrad in phase and 20 ÎŒs in timing

    Thermal noise from optical coatings in gravitational wave detectors

    Get PDF
    Gravitational waves are a prediction of Einstein's general theory of relativity. These waves are created by massive objects, like neutron stars or black holes, oscillating at speeds appreciable to the speed of light. The detectable effect on the Earth of these waves is extremely small, however, creating strains of the order of 10−21. There are a number of basic physics experiments around the world designed to detect these waves by using interferometers with very long arms, up to 4 km in length. The next-generation interferometers are currently being designed, and the thermal noise in the mirrors will set the sensitivity over much of the usable bandwidth. Thermal noise arising from mechanical loss in the optical coatings put on the mirrors will be a significant source of noise. Achieving higher sensitivity through lower mechanical loss coatings, while preserving the crucial optical and thermal properties, is an area of active research right now

    A new numerical method to construct binary neutron star initial data

    Full text link
    We present a new numerical method for the generation of binary neutron star initial data using a method along the lines of the the Wilson-Mathews or the closely related conformal thin sandwich approach. Our method uses six different computational domains, which include spatial infinity. Each domain has its own coordinates which are chosen such that the star surfaces always coincide with domain boundaries. These properties facilitate the imposition of boundary conditions. Since all our fields are smooth inside each domain, we are able to use an efficient pseudospectral method to solve the elliptic equations associated with the conformal thin sandwich approach. Currently we have implemented corotating configurations with arbitrary mass ratios, but an extension to arbitrary spins is possible. The main purpose of this paper is to introduce our new method and to test our code for several different configurations.Comment: 18 pages, 8 figures, 1 tabl

    Binary Neutron Stars in Quasi-equilibrium

    Full text link
    Quasi-equilibrium sequences of binary neutron stars are constructed for a variety of equations of state in general relativity. Einstein's constraint equations in the Isenberg-Wilson-Mathews approximation are solved together with the relativistic equations of hydrostationary equilibrium under the assumption of irrotational flow. We focus on unequal-mass sequences as well as equal-mass sequences, and compare those results. We investigate the behavior of the binding energy and total angular momentum along a quasi-equilibrium sequence, the endpoint of sequences, and the orbital angular velocity as a function of time, changing the mass ratio, the total mass of the binary system, and the equation of state of a neutron star. It is found that the orbital angular velocity at the mass-shedding limit can be determined by an empirical formula derived from an analytic estimation. We also provide tables for 160 sequences which will be useful as a guideline of numerical simulations for the inspiral and merger performed in the near future.Comment: 66 pages, 26 figures, 6 tables, aaste

    Performance of the WaveBurst algorithm on LIGO data

    Full text link
    In this paper we describe the performance of the WaveBurst algorithm which was designed for detection of gravitational wave bursts in interferometric data. The performance of the algorithm was evaluated on the test data set collected during the second LIGO Scientific run. We have measured the false alarm rate of the algorithm as a function of the threshold and estimated its detection efficiency for simulated burst waveforms.Comment: proceedings of GWDAW, 2003 conference, 13 pages, 6 figure

    Relic gravitons and viscous cosmologies

    Full text link
    Previously it was shown that there exists a class of viscous cosmological models which violate the dominant energy condition for a limited amount of time after which they are smoothly connected to the ordinary radiation era (which preserves the dominant energy conditions). This violation of the dominant energy condition at an early cosmological epoch may influence the slopes of energy spectra of relic gravitons that might be of experimental relevance. However, the bulk viscosity coefficient of these cosmologies became negative during the ordinary radiation era, and then the entropy of the sources driving the geometry decreases with time. We show that in the presence of viscous sources with a linear barotropic equation of state p=ÎłÏp=\gamma \rho we get viscous cosmological models with positive bulk viscous stress during all their evolution, and hence the matter entropy increases with the expansion time. In other words, in the framework of viscous cosmologies, there exist isotropic models compatible with the standard second law of thermodynamics which also may influence the slopes of energy spectra of relic gravitons.Comment: 5 pages, 4 figure
    • 

    corecore