76 research outputs found

    Fluctuating temperature modifies heat-mortality association around the globe

    Get PDF
    Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days’ minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: −0.33 to 1.69), 1.34% (95% CI: −0.14 to 2.73), 1.99% (95% CI: 0.29–3.57), and 2.73% (95% CI: 0.76–4.50) of total deaths for Q1–Q4 (first quartile–fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25–9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: −0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health

    a three-stage modelling study

    Get PDF
    Funding Information: This study was supported by the Australian Research Council (DP210102076) and the Australian National Health and Medical Research Council (APP2000581). YW was supported by the China Scholarship Council (number 202006010044). SL was supported by an Emerging Leader Fellowship of the Australian National Health and Medical Research Council (number APP2009866). QZ was supported by the Program of Qilu Young Scholars of Shandong University, Jinan, China. BW was supported by the China Scholarship Council (number 202006010043). JK and AU were supported by the Czech Science Foundation (project number 20–28560S). NS was supported by the National Institute of Environmental Health Sciences-funded HERCULES Center (P30ES019776). S-CP and YLG were supported by the Ministry of Science and Technology (Taiwan; MOST 109–2621-M-002–021). YH was supported by the Environment Research and Technology Development Fund (JPMEERF15S11412) of the Environmental Restoration and Conservation Agency. MdSZSC and PHNS were supported by the São Paulo Research Foundation (FAPESP). ST was supported by the Science and Technology Commission of Shanghai Municipality (grant number 18411951600). HO and EI were supported by the Estonian Ministry of Education and Research (IUT34–17). JM was supported by a fellowship of Fundação para a Ciência e a Tecnlogia (SFRH/BPD/115112/2016). AG and FS were supported by the Medical Research Council UK (grant ID MR/R013349/1), the Natural Environment Research Council UK (grant ID NE/R009384/1), and the EU's Horizon 2020 project, Exhaustion (grant ID 820655). AS, SR, and FdD were supported by the EU's Horizon 2020 project, Exhaustion (grant ID 820655). VH was supported by the Spanish Ministry of Economy, Industry and Competitiveness (grant ID PCIN-2017–046). AT was supported by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S). YG was supported by the Career Development Fellowship (number APP1163693) and Leader Fellowship (number APP2008813) of the Australian National Health and Medical Research Council. Statistics South Africa kindly provided the mortality data, but had no other role in the study. This Article is published in memory of Simona Fratianni, who helped to contribute the data for Romania. Publisher Copyright: © 2022 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5° × 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000–19. Methods: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5° × 0·5° from 2000–19. Temperature variability was calculated as the SD of the average of the same and previous days’ minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. Findings: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901–2 357 718) were associated with temperature variability per year, accounting for 3·4% (2·2–4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7–5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3–10·4), followed by Europe (4·4%, 2·2–5·6) and Africa (3·3, 1·9–4·6). Interpretation: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. Funding: Australian Research Council, Australian National Health & Medical Research Council.publishersversionpublishe

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Global, regional, and national burden of mortality associated with short-term temperature variability from 2000-19: a three-stage modelling study.

    Get PDF
    BACKGROUND: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0·5° × 0·5° were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000-19. METHODS: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0·5° × 0·5° from 2000-19. Temperature variability was calculated as the SD of the average of the same and previous days' minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. FINDINGS: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901-2 357 718) were associated with temperature variability per year, accounting for 3·4% (2·2-4·6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4·6% (3·7-5·3) per decade. The largest increase occurred in Australia and New Zealand (7·3%, 95% CI 4·3-10·4), followed by Europe (4·4%, 2·2-5·6) and Africa (3·3, 1·9-4·6). INTERPRETATION: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. FUNDING: Australian Research Council, Australian National Health & Medical Research Council

    Comparison for the effects of different components of temperature variability on mortality: A multi-country time-series study.

    Get PDF
    BACKGROUND Temperature variability (TV) is associated with increased mortality risk. However, it is still unknown whether intra-day or inter-day TV has different effects. OBJECTIVES We aimed to assess the association of intra-day TV and inter-day TV with all-cause, cardiovascular, and respiratory mortality. METHODS We collected data on total, cardiovascular, and respiratory mortality and meteorology from 758 locations in 47 countries or regions from 1972 to 2020. We defined inter-day TV as the standard deviation (SD) of daily mean temperatures across the lag interval, and intra-day TV as the average SD of minimum and maximum temperatures on each day. In the first stage, inter-day and intra-day TVs were modelled simultaneously in the quasi-Poisson time-series model for each location. In the second stage, a multi-level analysis was used to pool the location-specific estimates. RESULTS Overall, the mortality risk due to each interquartile range [IQR] increase was higher for intra-day TV than for inter-day TV. The risk increased by 0.59% (95% confidence interval [CI]: 0.53, 0.65) for all-cause mortality, 0.64% (95% CI: 0.56, 0.73) for cardiovascular mortality, and 0.65% (95% CI: 0.49, 0.80) for respiratory mortality per IQR increase in intra-day TV0-7 (0.9 °C). An IQR increase in inter-day TV0-7 (1.6 °C) was associated with 0.22% (95% CI: 0.18, 0.26) increase in all-cause mortality, 0.44% (95% CI: 0.37, 0.50) increase in cardiovascular mortality, and 0.31% (95% CI: 0.21, 0.41) increase in respiratory mortality. The proportion of all-cause deaths attributable to intra-day TV0-7 and inter-day TV0-7 was 1.45% and 0.35%, respectively. The mortality risks varied by lag interval, climate area, season, and climate type. CONCLUSIONS Our results indicated that intra-day TV may explain the main part of the mortality risk related to TV and suggested that comprehensive evaluations should be proposed in more countries to help protect human health

    Fluctuating temperature modifies heat-mortality association around the globe

    No full text
    Free PMC article https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8942841/Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days' minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: -0.33 to 1.69), 1.34% (95% CI: -0.14 to 2.73), 1.99% (95% CI: 0.29-3.57), and 2.73% (95% CI: 0.76-4.50) of total deaths for Q1-Q4 (first quartile-fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25-9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: -0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health.Public summary: Increased temperature variability (TV) poses a greater mortality risk due to heat; TV has a more profound modification effect on extreme heat-mortality association; Strategies against heat and TV simultaneously would benefit public healt.This study was supported by the Australian Research Council (DP210102076) and the Australian National Health and Medical Research Council (APP2000581). Y.W and B.W. were supported by the China Scholarship Council (nos. 202006010044 and 202006010043); S.L. was supported by an Emerging Leader Fellowship of the Australian National Health and Medical Research Council (no. APP2009866); Y.G. was supported by Career Development Fellowship (no. APP1163693) and Leader Fellowship (no. APP2008813) of the Australian National Health and Medical Research Council; J.K. and A.U. were supported by the Czech Science Foundation (project no. 20–28560S); N.S. was supported by the National Institute of Environmental Health Sciences-funded HERCULES Center (no. P30ES019776); Y.H. was supported by the Environment Research and Technology Development Fund (JPMEERF15S11412) of the Environmental Restoration and Conservation Agency; M.d.S.Z.S.C. and P.H.N.S. were supported by the São Paulo Research Foundation (FAPESP); H.O. and E.I. were supported by the Estonian Ministry of Education and Research (IUT34–17); J.M. was supported by a fellowship of Fundação para a Ciência e a Tecnlogia (SFRH/BPD/115112/2016); A.G. and F.S. were supported by the Medical Research Council UK (grant ID MR/R013349/1), the Natural Environment Research Council UK (grant ID NE/R009384/1), and the EU’s Horizon 2020 project, Exhaustion (grant ID 820655); A.S. and F.d.D. were supported by the EU’s Horizon 2020 project, Exhaustion (grant ID 820655); V.H. was supported by the Spanish Ministry of Economy, Industry and Competitiveness (grant ID PCIN-2017–046); and A.T. by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S).info:eu-repo/semantics/publishedVersio

    Identification of a Locus Near ULK1 Associated With Progression-Free Survival in Ovarian Cancer

    No full text
    BackgroundMany loci have been found to be associated with risk of epithelial ovarian cancer (EOC). However, although there is considerable variation in progression-free survival (PFS), no loci have been found to be associated with outcome at genome-wide levels of significance.MethodsWe carried out a genome-wide association study (GWAS) of PFS in 2,352 women with EOC who had undergone cytoreductive surgery and standard carboplatin/paclitaxel chemotherapy.ResultsWe found seven SNPs at 12q24.33 associated with PFS (P < 5 × 10-8), the top SNP being rs10794418 (HR = 1.24; 95% CI, 1.15-1.34; P = 1.47 × 10-8). High expression of a nearby gene, ULK1, is associated with shorter PFS in EOC, and with poor prognosis in other cancers. SNP rs10794418 is also associated with expression of ULK1 in ovarian tumors, with the allele associated with shorter PFS being associated with higher expression, and chromatin interactions were detected between the ULK1 promoter and associated SNPs in serous and endometrioid EOC cell lines. ULK1 knockout ovarian cancer cell lines showed significantly increased sensitivity to carboplatin in vitro.ConclusionsThe locus at 12q24.33 represents one of the first genome-wide significant loci for survival for any cancer. ULK1 is a plausible candidate for the target of this association.ImpactThis finding provides insight into genetic markers associated with EOC outcome and potential treatment options.See related commentary by Peres and Monteiro, p. 1604
    corecore