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GRAPHICAL ABSTRACT

PUBLIC SUMMARY
- Increased temperature variability (TV) poses a greater mortality risk due to heat

- TV has a more profound modification effect on extreme heat-mortality association

- Strategies against heat and TV simultaneously would benefit public health
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Studies have investigated the effects of heat and temperature variability (TV)
on mortality. However, few assessed whether TV modifies the heat-mortality
association. Data on daily temperature and mortality in the warm season
were collected from 717 locations across 36 countries. TV was calculated
as the standard deviation of the average of the same and previous days’min-
imum andmaximum temperatures. We used location-specific quasi-Poisson
regression models with an interaction term between the cross-basis term for
mean temperature and quartiles of TV to obtain heat-mortality associations
under each quartile of TV, and then pooled estimates at the country, regional,
and global levels. Results show the increased risk in heat-related mortality
with increments in TV, accounting for 0.70% (95% confidence interval [CI]:
�0.33 to 1.69), 1.34% (95% CI: �0.14 to 2.73), 1.99% (95% CI: 0.29–3.57),
and 2.73% (95% CI: 0.76–4.50) of total deaths for Q1–Q4 (first quartile–
fourth quartile) of TV. The modification effects of TV varied geographically.
Central Europe had the highest attributable fractions (AFs), corresponding
to 7.68% (95% CI: 5.25–9.89) of total deaths for Q4 of TV, while the lowest
AFs were observed in North America, with the values for Q4 of 1.74% (95%
CI: �0.09 to 3.39). TV had a significant modification effect on the heat-mor-
tality association, causing a higher heat-related mortality burden with incre-
ments of TV. Implementing targeted strategies against heat exposure and
fluctuant temperatures simultaneously would benefit public health.

INTRODUCTION
Global warming pervasively affects human life and undermines the years of

gains in public health.1,2 Owing to the increasing rate of 0.2�C in temperature
per decade, human-inducedwarminghas been associatedwith an increase in fre-
quency and intensity of hot days, reaching 2.9 billion additional person-days of

exposure to heatwave events of vulnerable populations older than 65 years in
2019.3–6 Increasing heat exposure, in turn, results in excess morbidity or mortal-
ity.7,8 For the past 20 years, an average of 489,075 heat-related excess deaths per
year was estimated at the global level, and the heat-related excess death ratio
increased from 0.83% (95% confidence interval [CI]: 0.52–1.25) in 2000–2003
to 1.04% (95% CI: 0.64–1.55) in 2016–2019.9 During 1991–2018, 37.0% (95%
CI: 20.5–76.3) of heat-related deaths in the warm season can be attributed to hu-
man-induced heating.10

Another challenging issue driven by climate change is temperature variability
(TV), an indicator of short-term temperature fluctuations or stability. Previous
studies have projected an increasing trend of TV in some regions, in particular
in tropical countries.11,12 Extensive studies have established evidence of the
health effects of TV, showing a significant association between TV and mortality
in many parts of the world and substantial public health burden stemming from
TV.13,14 Traditionally, studies of the health effects of TV have controlled for mean
temperature as a confounder.13,15,16 Based on similar biological mechanisms un-
derlying the health effects of TV and heat exposure, it is worth investigating
whether there exists a synergistic effect between them.17 Previous studies
observed season-differentiated effects of TV onmortality, which suggests poten-
tial effect modification of mean temperature on TV-related mortality.13,18 How-
ever, to the best of our knowledge, few studies have examined whether TV mod-
ifies the heat-mortality association. For example, the temperatures fluctuations
from 5�C to 25�C and from 13�C to 17�C represent the samemean temperature
of 15�C, but their effects on mortality are very likely to be different. Assessing
heat-mortality association without considering the modification of TV may fail
to recognize the most severe weather in relation to heat and to implement an
effective early warning system.
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In this study, using data from the Multi-Country Multi-City (MCC) Collaborative
Research Network, we systematically evaluated the contribution of TV to the
heat-mortality association in 717 locations across 36 countries over the period
1972–2018. Through this study, we aimed to provide a more complete picture
of the TV-differentiated heat-relatedmortality burden and to provide scientific ev-
idence that could improve the sensitivity of current heat-health warning systems
in hot temperatures with dramatic temperature fluctuations.

RESULTS
The descriptive statistics from each country are shown in Table 1. A total of

36.42 million deaths from total or non-external causes were identified during
the warm season from 1972 to 2018 (Table 1). On average, the median daily
TV across 717 locations was 5.8�C (25th–75th percentile: 4.9–6.7). The average
daily mean temperature under each quartile of TV was 20.6�C (Q1), 21.7�C (Q2),
22.3�C (Q3), and 23.0�C (Q4) (Table 1). The overall correlation coefficient be-
tween daily mean temperature and TV was 0.10 (Table S2). The summary de-
scriptions of the daily mean temperature and TV for each location are shown
in Tables S3–S5.

Figure 1 shows exposure-response curves between daily mean temperature
and mortality in warm season. In general, J-shaped associations between daily
mean temperature and mortality were found under different groups of TV, with

the risks increasing dramatically at extreme hot temperatures (Figure 1A). The
MMTs for different quartiles of TV were 17.62�C (Q1), 17.62�C (Q2), 18.39�C
(Q3), and 19.80�C (Q4). The difference in four curves was tested as statistically
significant. Regional exposure-response curves indicate potential geographical
patterns in the modification effect of TV on the heat-mortality association (Fig-
ure 1B). In general, higher mortality risks were observed for higher TV levels
across different regions. Southern Europe and central Europe generated a greater
difference in heat-related mortality risks between Q1 and Q4 of TV. For most
countries, the country-specific curve demonstrated increased mortality risks as
TV rose (Figure S1).
From the Q1 to the Q4 of TV, there was an increasing trend of AF due to heat

exposure, with a value of 0.70% (95% CI: �0.33 to 1.69) for Q1, 1.34% (95% CI:
�0.14 to 2.73) for Q2, 1.99% (95% CI: 0.29–3.57) for Q3, and 2.73% (95% CI:
0.76–4.50) for Q4 (Table 2). The corresponding attributable deaths are shown
in Table S6. Central Europe had the highest AFs for Q4 of TV among all of the re-
gions. The country-specific AFs stratified by TV groups are shown in Table S7.
Dividing the AF according to the country-specific TVST (an average of the
96.34th percentile across all of the countries), temperatures between MMT and
TVST were responsible for a small fraction, increasing from 0.66% (95% CI:
�0.35 to 1.62) for Q1 to 1.83% (95% CI: 0.17–3.37) for Q4 of TV. AF for
temperatures above TVST changed dramatically, with increasing AFs of 8.61%
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(95%CI:�1.82 to 17.49), 10.48% (95%CI:�0.02 to 19.25), 12.90% (95%CI: 2.70–
21.53), and 16.36% (95% CI: 5.81–24.62) for Q1–Q4 of TV, respectively (Table
S8). Country-specific TVST ranged between the 87.47th percentile and the
100th percentile (Figure 2A). Formost countries, AFs for the Q4 of TVwere higher

than the AFs for Q1 of TV, especially for temperatures above TVST (Figure 2B;
Table S8).
In the sensitivity analyses, our results were robust. The same patterns were

observed after changing the length of exposure to TV (Figures S2–S5; Tables

Table 1. Mortality data and description of daily TV and mean temperature in each stratum (from Q1 to Q4) of TV in 717 locations from 36 countries during the warm season

Country No. cities
Total death
(thousands)

Temperature variability (�C) Mean temperature (�C)

Median (P25–P75) Q1 Q2 Q3 Q4
Difference between
Q4 and Q1 of TV

Argentina 3 199 7.1 (6.1–8.1) 22.3 23.6 24.2 24.8 2.4

Australia 3 348 4.5 (3.7–5.6) 21.2 21.7 22.4 23.2 2.0

Brazil 18 1,064 5.5 (4.8–6.2) 25.0 25.8 26.2 26.5 1.5

Canada 26 1,135 6.4 (5.3–7.6) 16.4 17.3 17.7 18.5 2.1

China 12 284 5.2 (4.3–6.2) 24.1 25.2 25.6 25.7 1.6

Colombia 5 291 5.5 (4.9–6.1) 21.9 22.4 22.7 23.0 1.1

Costa Rica 1 10 5.5 (4.9–6.2) 23.0 23.3 23.5 23.6 0.6

Czech Republic 4 227 4.3 (3.3–5.2) 14.3 16.5 18.5 20.1 5.8

Ecuador 2 33 4.9 (4.2–5.7) 21.0 21.4 21.6 21.7 0.7

Estonia 5 46 5.7 (4.4–7.0) 14.0 14.9 15.9 17.1 3.2

France 18 513 5.9 (4.8–7.1) 17.6 18.6 19.7 21.4 3.8

Germany 12 974 5.9 (4.7–7.3) 14.8 16.5 18.2 20.7 6.0

Greece 1 82 5.3 (4.7–5.9) 25.5 26.6 27.9 29.1 3.7

Guatemala 1 21 5.0 (4.5–5.8) 19.8 20.5 20.7 20.9 1.1

Iran 1 41 8.7 (7.9–9.6) 25.2 26.1 26.2 26.0 0.8

Ireland 6 317 4.4 (3.7–5.2) 14.0 14.1 14.1 14.6 0.6

Italy 17 246 4.6 (4.0–5.4) 22.5 23.6 24.1 24.5 2.0

Japan 47 12,049 4.7 (3.9–5.5) 23.0 24.4 25.0 24.6 1.6

Mexico 10 757 7.5 (6.3–8.6) 21.3 22.7 23.5 24.1 2.8

Moldova 4 19 7.2 (6.1–8.4) 18.2 20.2 21.3 22.7 4.5

Netherland 5 142 5.5 (4.4–6.8) 15.4 16.0 16.8 18.9 3.6

Panama 1 2 4.7 (4.0–5.5) 28.1 28.9 29.2 28.7 0.5

Peru 18 174 6.6 (5.8–7.5) 19.7 20.2 20.2 20.1 0.4

Portugal 5 499 7.6 (6.3–8.9) 19.0 20.6 21.9 24.0 5.0

Puerto Rico 1 8 3.9 (3.6–4.3) 28.2 28.1 28.1 28.4 0.2

Romania 8 300 7.4 (6.3–8.5) 17.9 20.0 21.2 22.4 4.5

South Africa 52 2,148 7.8 (6.6–8.9) 21.0 22.2 22.7 23.1 2.0

South Korea 36 967 4.9 (3.9–6.0) 22.9 23.8 23.9 22.7 �0.2

Spain 45 830 7.7 (6.6–8.7) 19.4 21.5 22.6 23.8 4.4

Sweden 3 220 4.7 (3.6–6.0) 14.7 15.6 16.4 18.3 3.6

Switzerland 8 75 5.5 (4.3–6.5) 15.2 17.1 18.7 20.6 5.4

Thailand 62 571 5.5 (4.8–6.4) 28.0 28.8 29.3 29.6 1.6

UK 65 1,784 5.1 (4.1–6.3) 15.0 15.4 15.7 16.6 1.6

Uruguay 1 45 4.9 (3.6–5.9) 21.4 23.8 25.2 25.9 4.5

USA 209 9,968 7.0 (6.1–7.9) 22.1 22.9 23.1 23.0 0.9

Vietnam 2 38 5.5 (4.9–6.0) 28.5 29.3 29.6 30.2 1.6

Total 717 36,424 5.8 (4.9–6.7) 20.6 21.7 22.3 23.0 2.4

IQR = interquartile range; Q1 = the 1st quartile; Q2 = the 2nd quartile; Q3 = the 3rd quartile; Q4 = the 4th quartile; P25 = the 25th percentile; P75 = the 75th percentile; TV =
temperature variability.

Article

ll The Innovation 3(2): 100225, March 29, 2022 3



S9–S12) and after adding separate predictors in meta-regression with BLUP
(Table S13). Using incremental lag periods, shortening the duration of the
warm season, and adding relative humidity to the model, the modification effect
of TV still existed (Tables S14–S16). The AFs changed slightly after using
different methods to handle missing values (Table S17).

DISCUSSION
Our study showed that heat exposure together with high TV could significantly

increase the mortality risk in the warm season. We saw an upward trend in pre-
mature death due to heat exposure with the increase in TV. For temperatures
higher than TVST (96.34th percentile on average), AF showed a greater difference
across 4 TV groups. The TV-modified heat-mortality burden showed disparate
geographical variations.

The physiological mechanisms that explain the synergistic effects of TV and
heat exposure onmortality are not yet clearly defined. However, there are several
ways in which the two exposures may interact. When exposed to heat, people
expendmore of their reserves on thermoregulation to respond to heat.19 This pro-
cess involves elevations in heart rate and blood pressure, vasodilatation to trans-
fer heat to the skin, and respiration to lose heat with the expired air.20–22 Physio-
logical adaptation to higher temperatures takes time. If the temperature suddenly
changes in a short period of time, then people may have difficulty with internal
thermoregulation, resulting in inflammatory responses and coagulation abnor-
malities induced by heat stress.23 In addition, sudden temperature changes
may also activate bronchopulmonary vagal afferent nerves and the inflammatory
response.24 For people with underlying conditions (e.g., preexisting illness,
chronic diseases, poor fitness level), heat exposure may place extra pressure
on the cardiovascular and respiratory systems,25 especially when temperature
changes dramatically in a short period. Consequently, heat-related deaths
may occur.

Our findings are generally consistent with previous studies focusing on TV or
heat, indicating that both heat exposure and TV were positively associated with
mortality.13,26,27 Some studies have explored the modification effect of tempera-
ture on the association betweenmortality and diurnal temperature range (DTR) or
TV.17,28–30 A study in Japan showed a higher risk of cardiovascular mortality
associated with TV during extremely hot days in comparison with extremely
cold days.17 Another study in England and Wales showed a J-shaped curve of
the relationship between percentiles of DTR and mortality in the warm season,
while an inverted-V-shaped association was observed during the cold season.28

Althoughmany studies have quantified themortality burden associatedwith heat
exposure, to the best of our knowledge, none of them explored the potential het-
erogeneity attributable to TV.31–33 Without taking TV into account when assess-

ing the association between heat exposure andmortality, the heat-relatedmortal-
ity burden may be underestimated.
Some heterogeneity across regions was also found. For countries such as

Guatemala and Colombia, temperatures above TVST together with low TV
showed a higher mortality burden. The potential reasons for these results
may derive from the low variation in TV and thus a small difference between
Q1 and Q4 of TV. TV can be affected by many factors, such as greenness,
soil moisture, and precipitation.34,35 For example, vegetation removal and soil
aridation would act to increase daily temperature fluctuation with more rain-
fall.34 Temperate desert steppe generally has comparable warming effects on
Tmin and Tmax, while temperate meadow and temperate steppe may have larger
cooling effects on Tmax than Tmin.

35 In addition, population aging may mediate
the association. The variation in heat exposure is caused by the differences in
both vulnerable populations (in particular, the elderly) and temperature across
regions.36 For the countries such as South Africa (7.7%) and Cambodia
(6.8%), the vulnerable population aged 60 or older accounted for only a small
proportion of total population, lower than the global average level of 12.3% in
2015.37 The lower the fraction of older persons, the less sensitivity to heat expo-
sure for the whole country, and the lower the mortality burden attributable to
heat exposure. With the deepening of the aging of society, vulnerable popula-
tions are expected to increase.37 Further research is warranted to explore the
geographic variation in TV-differentiated heat-related mortality burden and call
for targeted strategies in mitigation and adaptation against climate change.
As a response to the increasing heat conditions, heat-health warning systems

are developed in some parts of the world. For example, the WHO Regional Office
for Europe developed the heat-health action plans (HHAPs) in 2008, covering 35
out of 53 member states of the WHO European Region by the end of 2018.38

Although it is hard to assess how much heat-health prevention was associated
with HHAPs, a substantial reduction in heat-related deaths was observed since
the implementation of preventivemeasures (either HHAPs or other types of inter-
vention).38–41 However, the majority of warning systems use mean temperature
or Tmax as indices to trigger the warnings and inform the general public through
the mass media without user-oriented attractive notification.42,43 As suggested
by our findings, the health effects of heat exposure could be magnified if they
are accompanied by a higher TV and the findings were consistent across coun-
tries in Europe where HHAPs are implemented,44 implying that it is difficult for
current warning systems to obtain effective heat prevention when the TV is high.

Strengths and limitations
This study has several strengths. First, to the best of our knowledge, this is the

first study to systematically explore the modifying effects of TV on heat-related

Figure 1. Overall cumulative exposure-response associations by temperature variability (A) Overall exposure-response curves between daily mean temperature and mortality in the
warm season, stratified by quartiles of TV. (B) Regional exposure-response curves between daily mean temperature and daily mortality in the warm season, stratified by quartiles of TV.
Shaded areas indicate the 95% CI. Definition of abbreviations:Q1 = the 1st quartile; Q2 = the 2nd quartile; Q3 = the 3rd quartile; Q4 = the 4th quartile; TV = temperature variability.
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mortality risks. The assessment of TV-differentiated mortality risks associated
with heat exposure provides a better understanding of heat vulnerability. When
quantifying the heat-related mortality burden, the effect of TV should not be
ignored. Second, this study benefits from the large-scale investigation across
multiple countries and a long period of time. It enables us to provide a global
vision of the heat-related mortality burden under different TV exposure and to
explore potential variation in estimations in terms of socioeconomic status and
climatic and geographic features. Finally, our study targeted the heat-relatedmor-
tality burden more precisely by highlighting the modification effect of TV when
temperatures were higher than TVST.

Several limitations should be acknowledged. As the time series design and
temperature data from fixed monitoring stations were used, ecological fallacy
and measurement errors in exposure seem to be inevitable. Due to the lack of
data for some areas of the world, some regions contain only one country. The
extrapolation and interpretation of the findings are restricted to the generalization
of our results. In addition, we are unable to investigate the modification effect of
TV on the association between heat exposure and age- or cause-specific mortal-
ity. As the biological mechanisms are sensitive to causes of death, further
research iswarranted to investigate the disease-differentiatedmodification effect
of TV on heat-related mortality burden.

CONCLUSIONS
Our findings, which are based on multi-country data, revealed that higher TV

over a short period of time increased the mortality risks associated with heat
exposure. It is imperative to raise public awareness of the potential health risks
of TV. Targeted adaptation strategies against heat-related mortality burden
should be implemented after taking into account the fluctuation of temperatures
and geographical patterns.

MATERIALS AND METHODS
Data collection

The MCC Collaborative Research Network database (http://mccstudy.lshtm.ac.uk/) was

used. Daily death counts and meteorological data, including mean temperature, maximum

temperature (Tmax), minimum temperature (Tmin), and relative humidity were extracted.

The International Classification of Diseases, 9th and 10th revisions (ICD-9 and ICD-10) codes

were used to identify the causes of death. We extracted the data series on non-external

causes of death (ICD-9: 0–799; ICD-10: A00–R99), or, if not available, all-cause mortality.

Our analyses were restricted to locations with complete weather data in the warm season

(the warmest 4 consecutive months) for at least 2 consecutive years. Detailed information

on data cleaning is described in Text S1. Finally, 717 locations across 36 countries were

included. Daily mortality, mean temperature, Tmin, and Tmax data had overall missing rates

of 0.14%, 0.84%, 0.86%, and 0.73%, respectively (Table S1).

Calculation of temperature variability
TV was calculated as the standard deviation (SD) of the average of Tmin and Tmax for the

current day and 1 day before (Tmax-lag0, Tmax-lag1, Tmin-lag0, Tmin-lag1).
13 In the sensitivity anal-

ysis, higher lengths of exposure (0–2 days and 0–3 days) were applied.

Statistical analysis
We used a two-stage time series design to assess the modification effect of TV on the

heat-related mortality burden in the warm season. In the first stage, a generalized linear

regression with the quasi-Poisson family allowing overdispersion in the death counts

was applied for each location to obtain location-specific estimates for the heat-mortality

association. To capture the modification effect of TV on the heat-mortality association,

we introduced an interaction term between a cross-basis function of daily mean temper-

ature and quartiles (Qs) of TV. We used relative rather than absolute levels of TV to accom-

modate different levels of adaptive capacity to TV across locations. The equation was as

follows:

Yit � Poissonðm; qÞ

EðYitÞ = expðai + biTVit + cbðTempit; lag = 10Þ + cbðTempit; lag = 10Þ
3 QuartileTV + nsðTimeit; df = 4 = yearÞ + giDOWitÞ

VARðYitÞ = qm

where Yit is daily deaths counts in location i on day t; TVit is the linear function of TV; and

cbðTempit; lag = 10Þ, built by distributed-lag nonlinear models (DLNMs), is a cross-basis

function of daily mean temperature featuring the nonlinear and delayed association over

10 days of lag.45 It incorporates a natural cubic spline functionwith two internal knots placed

at the 50th and 90th percentiles of the location-specific temperature distributions during the

warm season and a natural cubic spline function of lag days with 2 internal knots placed at

equally spaced values in the log scale to capture the delayed effect of temperature.10

QuartileTV stands for the dummy coded categorical variable of TV groups (from Q1 to

Q4). To control for unmeasured temporal trends such as seasonality and long-term trend,

nsðTimeit;df = 4 =yearÞ, a natural cubic function of calendar dayswith 4 degrees of freedom
(df) per year was included. In addition, an indicator for the day of the week ðDOWitÞ was
adjusted in the model to control for weekly variations in risk.

In the second stage, multivariate random-effects meta-analysis without predictors was

used to pool the location-specific estimates at the global, regional, and national levels. Pre-

cise estimates for each location were obtained using the best linear unbiased prediction

(BLUP) estimations. BLUPs can provide more accurate estimates in locations with small

daily death counts or short time series by borrowing information across locations.46

Quantification of temperature-specific risks and attributable fraction
For each quartile of TV, we showed the risk over a 10-day lag period at each tempera-

ture value compared with the risk at minimum mortality temperature (MMT), at which the

Table 2. Attributable fractions of mortality due to heat exposure, stratified by quantiles of TV in each region

Region

Attributable fraction (%)

Q1 Q2 Q3 Q4

North America 0.71 (�0.64 to 2.00) 1.07 (�0.52 to 2.56) 1.45 (�0.22 to 3.00) 1.74 (�0.09 to 3.39)

Central America 0.22 (�0.31 to 0.74) 0.42 (�0.46 to 1.25) 1.37 (�0.33 to 2.95) 2.19 (�0.25 to 4.44)

South America 0.82 (�0.75 to 2.32) 1.59 (�0.65 to 3.67) 2.21 (0.04–4.21) 2.98 (0.20–5.46)

Northern Europe 0.17 (�0.34 to 0.67) 0.44 (�0.49 to 1.32) 0.76 (�0.27 to 1.72) 2.52 (0.52–4.31)

Central Europe 0.26 (�0.30 to 0.80) 1.08 (�0.22 to 2.29) 2.41 (0.55–4.13) 7.68 (5.25–9.89)

Southern Europe 1.19 (0.07–2.24) 2.95 (0.99–4.76) 4.09 (1.76–6.23) 7.34 (4.17–10.20)

South Africa 0.44 (�0.85 to 1.68) 0.82 (�0.98 to 2.51) 1.22 (�1.06 to 3.32) 1.79 (�1.60 to 4.72)

Middle East Asia 1.65 (�1.76 to 4.77) 3.64 (�0.38 to 7.33) 4.23 (0.37–7.75) 3.73 (0.26–6.89)

East Asia 0.87 (0.03–1.66) 1.70 (0.41–2.92) 2.47 (0.97–3.87) 2.29 (0.94–3.54)

Southeast Asia 0.55 (�0.83 to 1.91) 1.16 (�1.68 to 3.87) 2.22 (�1.49 to 5.62) 3.56 (�0.87 to 7.36)

Australia 0.25 (�0.41 to 0.86) 0.69 (�0.33 to 1.64) 1.19 (�0.18 to 2.49) 2.62 (0.70–4.39)

International 0.70 (�0.33 to 1.69) 1.34 (�0.14 to 2.73) 1.99 (0.29–3.57) 2.73 (0.76–4.50)

Definition of abbreviations: Q1 = the 1st quartile; Q2 = the 2nd quartile; Q3 = the 3rd quartile; Q4 = the 4th quartile; TV = temperature variability.
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risk of mortality was the lowest. The statistical significance of the difference in heat-mor-

tality risks across quartiles of TV was assessed using repeated-measures multivariate

meta-analysis. Briefly, based on location-specific estimates of four quartiles of TV, we per-

formed a random effects meta-regression with TV quartiles as the only meta-predictor to

test the difference in overall exposure-response curves of heat-mortality risks across quar-

tiles of TV. Furthermore, in each country, to identify the potential targeted percentile ranges

of temperature modified by TV, we tested the statistical significance of the difference in

heat-mortality risks between Q1 and Q4 of TV using a fixed-effects meta-regression model

at each temperature value. The modification effect of TV was identified as being statisti-

cally significant if there was a significant difference in heat-mortality risks between Q1 and

Q4 of TV. The fixed-effects model was used because these country-specific estimates

were based on the same samples. The country-specific temperature percentiles above

which statistically significant modification effects of TV were observed, were called TV

sensitive heat thresholds (TVSTs) and used to separate components of mortality burden

attributable to heat exposure.

We compared the attributable deaths and attributable fractions (AFs) associated with

heat exposure above MMT for each quartile of TV. Two components of heat exposure

were used to separate the overall AF: from the quantile of MMT to TVST and above

TVST. Daily attributable deaths due to each component of heat were calculated using

BLUP location-specific association and then summed to obtain the total attributable deaths

during the study period.47 AF was computed by dividing the attributable deaths by the total

death counts. Monte Carlo simulation (n = 1,000) was used to derive 95% CIs.

Sensitivity analysis
Weconductedseveral sensitivity analyses to check the robustnessof our results: (1) using

different lengths of exposure to TV (TV 0–2 and TV 0–3); (2) adding separately location-spe-

cific predictors (region, average mean temperature, range of mean temperature, indicators

for Köppen-Geiger climatic zones, gross domestic product [GDP] per capita, latitude, and

longitude) to the meta-analytical model with BLUP in the second stage to check whether

the pooled estimates would change while adjusting for the effects of each predictor on

the location-specific estimates; (3) choosing alternative 2 and 3 warmest consecutive

months to define the warm season; (4) changing the lag days of heat from 7 to 13 days;

and (5) controlling the potential effect of relative humidity using a natural cubic spline with

3 df. Finally, although the overall missing rates for mortality and temperature data were

generally small (Table S1), we also performed sensitivity analyses by restricting our analyses

to locationswith complete data and by using complete data after imputation.Missing values

in time-series data were imputed by the spline interpolation method.

R software (version 3.6.2) with packages “dlnm” (for the construction of the cross-basis

functions), “mvmeta” (for meta-regression), and “imputeTS” (for spline interpolation of the

time-series data) was used to perform all of the analyses. A two-sided p < 0.05 was set

as statistically significant. The code is available at the personal website of the first

author (Github: https://github.com/yaowu-ops/Modification-effect-of-TV-on-heat-mortality-

association.git).

Data sharing
Datawere collectedwithin theMCCCollaborative ResearchNetwork under a data-sharing

agreement and cannot be made publicly available. Researchers can refer to MCC partici-

pants, who are listed as coauthors of this article, for information on accessing the data for

each country.
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