224 research outputs found

    Mechanical compression in cofacial porphyrin cyclophane pincers

    Get PDF
    Intra- and intermolecular interactions are dominating chemical processes, and their concerted interplay enables complex nonequilibrium states like life. While the responsible basic forces are typically investigated spectroscopically, a conductance measurement to probe and control these interactions in a single molecule far out of equilibrium is reported here. Specifically, by separating macroscopic metal electrodes, two π-conjugated, bridge-connected porphyrin decks are peeled off on one side, but compressed on the other side due to the covalent mechanical fixation. We observe that the conductance response shows an exceptional exponential rise by two orders of magnitude in individual breaking events during the stretching. Theoretical studies atomistically explain the measured conductance behavior by a mechanically activated increase in through-bond transport and a simultaneous strengthening of through-space coupling. Our results not only reveal the various interacting intramolecular transport channels in a molecular set of levers, but also the molecules\u27 potential to serve as molecular electro-mechanical sensors and switches

    Mechanical conductance tunability of a porphyrin–cyclophane single-molecule junction

    Get PDF
    The possibility to study quantum interference phenomena at ambient conditions is an appealing feature of molecular electronics. By connecting two porphyrins in a cofacial cyclophane, we create an attractive platform for mechanically controlling electric transport through the intramolecular extent of π-orbital overlap of the porphyrins facing each other and through the angle of xanthene bridges with regard to the porphyrin planes. We analyze theoretically the evolution of molecular configurations in the pulling process and the corresponding changes in electric conduction by combining density functional theory (DFT) with Landauer scattering theory of phase-coherent elastic transport. Predicted conductances during the stretching process show order of magnitude variations caused by two robust destructive quantum interference features that span through the whole electronic gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Mechanically-controlled break junction (MCBJ) experiments at room temperature verify the mechanosensitive response of the molecular junctions. During the continuous stretching of the molecule, they show conductance variations of up to 1.5 orders of magnitude over single breaking events. Uncommon triple- and quadruple-frequency responses are observed in periodic electrode modulation experiments with amplitudes of up to 10 Å. This further confirms the theoretically predicted double transmission dips caused by the spatial and energetic rearrangement of molecular orbitals, with contributions from both through-space and through-bond transport

    Mechanical conductance tunability of a porphyrin–cyclophane single-molecule junction

    Get PDF
    The possibility to study quantum interference phenomena at ambient conditions is an appealing feature of molecular electronics. By connecting two porphyrins in a cofacial cyclophane, we create an attractive platform for mechanically controlling electric transport through the intramolecular extent of π-orbital overlap of the porphyrins facing each other and through the angle of xanthene bridges with regard to the porphyrin planes. We analyze theoretically the evolution of molecular configurations in the pulling process and the corresponding changes in electric conduction by combining density functional theory (DFT) with Landauer scattering theory of phase-coherent elastic transport. Predicted conductances during the stretching process show order of magnitude variations caused by two robust destructive quantum interference features that span through the whole electronic gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO). Mechanically-controlled break junction (MCBJ) experiments at room temperature verify the mechanosensitive response of the molecular junctions. During the continuous stretching of the molecule, they show conductance variations of up to 1.5 orders of magnitude over single breaking events. Uncommon triple-and quadruple-frequency responses are observed in periodic electrode modulation experiments with amplitudes of up to 10 Å. This further confirms the theoretically predicted double transmission dips caused by the spatial and energetic rearrangement of molecular orbitals, with contributions from both through-space and through-bond transport. This journal is QN/van der Zant La

    Genome-wide copy number alterations in subtypes of invasive breast cancers in young white and African American women.

    Get PDF
    Genomic copy number alterations (CNA) are common in breast cancer. Identifying characteristic CNAs associated with specific breast cancer subtypes is a critical step in defining potential mechanisms of disease initiation and progression. We used genome-wide array comparative genomic hybridization to identify distinctive CNAs in breast cancer subtypes from 259 young (diagnosed with breast cancer at 40%) for TN breast tumors at 10q, 11p, 11q, 16q, 20p, and 20q. In addition, we report CNAs that differ in frequency between TN breast tumors of AA and CA women. This is of particular relevance because TN breast cancer is associated with higher mortality and young AA women have higher rates of TN breast tumors compared to CA women. These data support the possibility that higher overall frequency of genomic alteration events as well as specific focal CNAs in TN breast tumors might contribute in part to the poor breast cancer prognosis for young AA women

    The impact of minimally-invasive esophagectomy operative duration on post-operative outcomes

    Get PDF
    BackgroundEsophagectomy, an esophageal cancer treatment mainstay, is a highly morbid procedure. Prolonged operative time, only partially predetermined by case complexity, may be uniquely harmful to minimally-invasive esophagectomy (MIE) patients for numerous reasons, including anastomotic leak, tenuous conduit perfusion and protracted single-lung ventilation, but the impact is unknown. This multi-center retrospective cohort study sought to characterize the relationship between MIE operative time and post-operative outcomes.MethodsWe abstracted multi-center data on esophageal cancer patients who underwent MIE from 2010 to 2021. Predictor variables included age, sex, comorbidities, body mass index, prior cardiothoracic surgery, stage, and neoadjuvant therapy. Outcomes included complications, readmissions, and mortality. Association analysis evaluated the relationship between predictor variables and operative time. Multivariate logistic regression characterized the influence of potential predictor variables and operative time on post-operative outcomes. Subgroup analysis evaluated the association between MIE >4 h vs. ≤4 h and complications, readmissions and survival.ResultsFor the 297 esophageal cancer patients who underwent MIE between 2010 and 2021, the median operative duration was 4.8 h [IQR: 3.7–6.3]. For patients with anastomotic leak (5.1%) and 1-year mortality, operative duration was elevated above the median at 6.3 h [IQR: 4.8–8.6], p = 0.008) and 5.3 h [IQR: 4.4–6.8], p = 0.04), respectively. In multivariate logistic regression, each additional hour of operative time increased the odds of anastomotic leak and 1-year mortality by 39% and 19%, respectively.ConclusionsEsophageal cancer is a poor prognosis disease, even with optimal treatment. Operative efficiency, a modifiable surgical variable, may be an important target to improve MIE patient outcomes

    Intravenous dosing of tocilizumab in patients younger than two years of age with systemic juvenile idiopathic arthritis

    Get PDF
    The anti-interleukin-6 receptor-alpha antibody tocilizumab was approved for intravenous (IV) injection in the treatment of patients with systemic juvenile idiopathic arthritis (sJIA) aged 2 to 17 years based on results of a randomized controlled phase 3 trial. Tocilizumab treatment in systemic juvenile idiopathic arthritis (sJIA) patients younger than 2 was investigated in this open-label phase 1 trial and compared with data from the previous trial in patients aged 2 to 17 years.Patients younger than 2 received open-label tocilizumab 12 mg/kg IV every 2 weeks (Q2W) during a 12-week main evaluation period and an optional extension period. The primary end point was comparability of pharmacokinetics during the main evaluation period to that of the previous trial (in patients aged 2-17 years), and the secondary end point was safety; pharmacodynamics and efficacy end points were exploratory. Descriptive comparisons for pharmacokinetics, pharmacodynamics, safety, and efficacy were made with sJIA patients aged 2 to 17 years weighing < 30 kg (n = 38) who received tocilizumab 12 mg/kg IV Q2W in the previous trial (control group).Eleven patients (mean age, 1.3 years) received tocilizumab during the main evaluation period. The primary end point was met: tocilizumab exposures for patients younger than 2 were within the range of the control group (mean [±SD] μg/mL concentration at the end-of-dosing interval [Cmin]: 39.8 [±14.3] vs 57.5 [±23.3]; maximum concentration [Cmax] postdose: 288 [±40.4] vs 245 [±57.2]). At week 12, pharmacodynamic measures were similar between patients younger than 2 and the control group; mean change from baseline in Juvenile Arthritis Disease Activity Score-71 was - 17.4 in patients younger than 2 and - 28.8 in the control group; rash was reported by 14.3 and 13.5% of patients, respectively. Safety was comparable except for the incidence of serious hypersensitivity reactions (27.3% in patients younger than 2 vs 2.6% in the control group).Tocilizumab 12 mg/kg IV Q2W provided pharmacokinetics, pharmacodynamics, and efficacy in sJIA patients younger than 2 comparable to those in patients aged 2 to 17 years. Safety was comparable except for a higher incidence of serious hypersensitivity events in patients younger than 2 years.Juvenile idiopathic arthritis.ClinicalTrials.gov, NCT01455701 . Registered, October 20, 2011, Date of enrollment of first participant: October 26, 2012

    Association of Accelerometry-Measured Physical Activity and Cardiovascular Events in Mobility-Limited Older Adults: The LIFE (Lifestyle Interventions and Independence for Elders) Study.

    Get PDF
    BACKGROUND:Data are sparse regarding the value of physical activity (PA) surveillance among older adults-particularly among those with mobility limitations. The objective of this study was to examine longitudinal associations between objectively measured daily PA and the incidence of cardiovascular events among older adults in the LIFE (Lifestyle Interventions and Independence for Elders) study. METHODS AND RESULTS:Cardiovascular events were adjudicated based on medical records review, and cardiovascular risk factors were controlled for in the analysis. Home-based activity data were collected by hip-worn accelerometers at baseline and at 6, 12, and 24&nbsp;months postrandomization to either a physical activity or health education intervention. LIFE study participants (n=1590; age 78.9±5.2 [SD] years; 67.2% women) at baseline had an 11% lower incidence of experiencing a subsequent cardiovascular event per 500&nbsp;steps taken per day based on activity data (hazard ratio, 0.89; 95% confidence interval, 0.84-0.96; P=0.001). At baseline, every 30&nbsp;minutes spent performing activities ≥500&nbsp;counts per minute (hazard ratio, 0.75; confidence interval, 0.65-0.89 [P=0.001]) were also associated with a lower incidence of cardiovascular events. Throughout follow-up (6, 12, and 24&nbsp;months), both the number of steps per day (per 500&nbsp;steps; hazard ratio, 0.90, confidence interval, 0.85-0.96 [P=0.001]) and duration of activity ≥500&nbsp;counts per minute (per 30&nbsp;minutes; hazard ratio, 0.76; confidence interval, 0.63-0.90 [P=0.002]) were significantly associated with lower cardiovascular event rates. CONCLUSIONS:Objective measurements of physical activity via accelerometry were associated with cardiovascular events among older adults with limited mobility (summary score &gt;10 on the Short Physical Performance Battery) both using baseline and longitudinal data. CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT01072500

    A multi-targeted approach to suppress tumor-promoting inflammation

    Get PDF
    Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes

    Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Collagen deposition and an altered matrix metalloproteinase (MMP) expression profile are hallmarks of fibrosis. Type IV collagen is the most abundant structural basement membrane component of tissue, which increases 14-fold during fibrogenesis in the liver. Proteolytic degradation of collagens by proteases produces small fragments, so-called neoepitopes, which are released systemically. Technologies investigating MMP-generated fragments of collagens may provide more useful information than traditional serological assays that crudely measure total protein. In the present study, we developed an ELISA for the quantification of a neoepitope generated by MMP degradation of type IV collagen and evaluated the association of this neoepitope with liver fibrosis in two animal models.</p> <p>Methods</p> <p>Type IV collagen was degraded <it>in vitro </it>by a variety of proteases. Mass spectrometric analysis revealed more than 200 different degradation fragments. A specific peptide sequence, 1438'GTPSVDHGFL'1447 (CO4-MMP), in the α1 chain of type IV collagen generated by MMP-9 was selected for ELISA development. ELISA was used to determine serum levels of the CO4-MMP neoepitope in two rat models of liver fibrosis: inhalation of carbon tetrachloride (CCl<sub>4</sub>) and bile duct ligation (BDL). The levels were correlated to histological findings using Sirius red staining.</p> <p>Results</p> <p>A technically robust assay was produced that is specific to the type IV degradation fragment, GTPSVDHGFL. CO4-MMP serum levels increased significantly in all BDL groups compared to baseline, with a maximum increase of 248% seen two weeks after BDL. There were no changes in CO4-MMP levels in sham-operated rats. In the CCl<sub>4 </sub>model, levels of CO4-MMP were significantly elevated at weeks 12, 16 and 20 compared to baseline levels, with a maximum increase of 88% after 20 weeks. CO4-MMP levels correlated to Sirius red staining results.</p> <p>Conclusion</p> <p>This ELISA is the first assay developed for assessment of proteolytic degraded type IV collagen, which, by enabling quantification of basement membrane degradation, could be relevant in investigating various fibrogenic pathologies. The CO4-MMP degradation fragment was highly associated with liver fibrosis in the two animal models studied.</p

    Primary brain calcification: an international study reporting novel variants and associated phenotypes.

    Get PDF
    Primary familial brain calcification (PFBC) is a rare cerebral microvascular calcifying disorder with a wide spectrum of motor, cognitive, and neuropsychiatric symptoms. It is typically inherited as an autosomal-dominant trait with four causative genes identified so far: SLC20A2, PDGFRB, PDGFB, and XPR1. Our study aimed at screening the coding regions of these genes in a series of 177 unrelated probands that fulfilled the diagnostic criteria for primary brain calcification regardless of their family history. Sequence variants were classified as pathogenic, likely pathogenic, or of uncertain significance (VUS), based on the ACMG-AMP recommendations. We identified 45 probands (25.4%) carrying either pathogenic or likely pathogenic variants (n = 34, 19.2%) or VUS (n = 11, 6.2%). SLC20A2 provided the highest contribution (16.9%), followed by XPR1 and PDGFB (3.4% each), and PDGFRB (1.7%). A total of 81.5% of carriers were symptomatic and the most recurrent symptoms were parkinsonism, cognitive impairment, and psychiatric disturbances (52.3%, 40.9%, and 38.6% of symptomatic individuals, respectively), with a wide range of age at onset (from childhood to 81 years). While the pathogenic and likely pathogenic variants identified in this study can be used for genetic counseling, the VUS will require additional evidence, such as recurrence in unrelated patients, in order to be classified as pathogenic
    corecore