211 research outputs found

    Dynamical analysis on f(R,G)f(R,\mathcal{G}) cosmology

    Full text link
    We use a dynamical system approach to study the cosmological viability of f(R,G)f(R,\mathcal{G}) gravity theories. The method consists of formulating the evolution equations as an autonomous system of ODEs, using suitable variables. The formalism is applied to a class of models in which f(R,G)RnG1nf(R,\mathcal{G})\propto R^{n}\mathcal{G}^{1-n} and its solutions and corresponding stability are analysed in detail. New accelerating solutions that can be attractors in the phase space are found. We also find that this class of models does not exhibit a matter-dominated epoch, a solution which is inconsistent with current cosmological observations.Comment: 12 pages, 4 figures. Accepted for publication in Classical and Quantum Gravit

    Ground-Based Ultraviolet-Radiation Measurements during Springtime in the Southern Hemisphere

    Get PDF
    We report the first measurements obtained by a network of UV-B detectors established through Argentina and Chile, at locations covering latitudes extending from 53°S to 18° S. Evidence that UVB increases are detected at these latitudes during the Austral spring 1993 is presented

    Ground-based ultraviolet-radiation measurements during springtime in the Southern hemisphere

    Get PDF
    We report the first measurements obtained by a network of UV-B detectors established through Argentina and Chile, at locations covering latitudes extending from 53°S to 18° S. Evidence that UVB increases are detected at these latitudes during the Austral spring 1993 is presented. The destruction of the stratospheric ozone layer is generally considered one of the most serious environmental problems. It has been recently published that during October 1998 the ozone hole has been the deepest ever recorded. Reduction of the stratospheric ozone layer was un ambiguously detected about two decades ago in the Antarctic continent. Since then it has been systematically monitored by different means (satellite, balloon soundings and ground station observations. One of the most serious content reduction is the increase of biologically effective ultraviolet doses, particularly the so-called ultraviolet B radiation (280-320 nm) received at the Earth surface, with multiple possible hazards for living species. Despite these consequences, ground stations to check the UV Sun radiation are not very numerous, particularly outside the circumpolar area in the Southern Hemisphere. With the aim of studying whether the ozone depletion over the Antarctic area has extended further, and whether the possibility that UV radiation increase may begin to affect inhabited regions, a network of UVB detectors has been established through Argentina and Chile, at locations covering latitudes extending from 53°S to 18° S. Here we report the first measurements obtained by this network providing evidence that UVB increases are detected at these latitudes during the last Austral spring.Facultad de Ciencias Exacta

    Ground-based ultraviolet-radiation measurements during springtime in the Southern hemisphere

    Get PDF
    We report the first measurements obtained by a network of UV-B detectors established through Argentina and Chile, at locations covering latitudes extending from 53°S to 18° S. Evidence that UVB increases are detected at these latitudes during the Austral spring 1993 is presented. The destruction of the stratospheric ozone layer is generally considered one of the most serious environmental problems. It has been recently published that during October 1998 the ozone hole has been the deepest ever recorded. Reduction of the stratospheric ozone layer was un ambiguously detected about two decades ago in the Antarctic continent. Since then it has been systematically monitored by different means (satellite, balloon soundings and ground station observations. One of the most serious content reduction is the increase of biologically effective ultraviolet doses, particularly the so-called ultraviolet B radiation (280-320 nm) received at the Earth surface, with multiple possible hazards for living species. Despite these consequences, ground stations to check the UV Sun radiation are not very numerous, particularly outside the circumpolar area in the Southern Hemisphere. With the aim of studying whether the ozone depletion over the Antarctic area has extended further, and whether the possibility that UV radiation increase may begin to affect inhabited regions, a network of UVB detectors has been established through Argentina and Chile, at locations covering latitudes extending from 53°S to 18° S. Here we report the first measurements obtained by this network providing evidence that UVB increases are detected at these latitudes during the last Austral spring.Facultad de Ciencias Exacta

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    Spinning neutron stars asymmetric with respect to their rotation axis are potential sources of continuous gravitational waves for ground-based interferometric detectors. In the case of known pulsars a fully coherent search, based on matched filtering, which uses the position and rotational parameters obtained from electromagnetic observations, can be carried out. Matched filtering maximizes the signalto- noise (SNR) ratio, but a large sensitivity loss is expected in case of even a very small mismatch between the assumed and the true signal parameters. For this reason, narrow-band analysis methods have been developed, allowing a fully coherent search for gravitational waves from known pulsars over a fraction of a hertz and several spin-down values. In this paper we describe a narrow-band search of 11 pulsars using data from Advanced LIGO’s first observing run. Although we have found several initial outliers, further studies show no significant evidence for the presence of a gravitational wave signal. Finally, we have placed upper limits on the signal strain amplitude lower than the spin-down limit for 5 of the 11 targets over the bands searched; in the case of J1813-1749 the spin-down limit has been beaten for the first time. For an additional 3 targets, the median upper limit across the search bands is below the spin-down limit. This is the most sensitive narrow-band search for continuous gravitational waves carried out so far

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    A gravitational-wave standard siren measurement of the Hubble constant

    Get PDF
    On 17 August 2017, the Advanced LIGO 1 and Virgo 2 detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system 3 . Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source 4-6 . This sky region was subsequently observed by optical astronomy facilities 7 , resulting in the identification 8-13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren' 14-18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder' 19 : the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements 20,21 , while being completely independent of them. Additional standard siren measurements from future gravitationalwave sources will enable the Hubble constant to be constrained to high precision

    First measurement of the Hubble Constant from a Dark Standard Siren using the Dark Energy Survey Galaxies and the LIGO/Virgo Binary–Black-hole Merger GW170814

    Get PDF
    International audienceWe present a multi-messenger measurement of the Hubble constant H 0 using the binary–black-hole merger GW170814 as a standard siren, combined with a photometric redshift catalog from the Dark Energy Survey (DES). The luminosity distance is obtained from the gravitational wave signal detected by the Laser Interferometer Gravitational-Wave Observatory (LIGO)/Virgo Collaboration (LVC) on 2017 August 14, and the redshift information is provided by the DES Year 3 data. Black hole mergers such as GW170814 are expected to lack bright electromagnetic emission to uniquely identify their host galaxies and build an object-by-object Hubble diagram. However, they are suitable for a statistical measurement, provided that a galaxy catalog of adequate depth and redshift completion is available. Here we present the first Hubble parameter measurement using a black hole merger. Our analysis results in , which is consistent with both SN Ia and cosmic microwave background measurements of the Hubble constant. The quoted 68% credible region comprises 60% of the uniform prior range [20, 140] km s−1 Mpc−1, and it depends on the assumed prior range. If we take a broader prior of [10, 220] km s−1 Mpc−1, we find (57% of the prior range). Although a weak constraint on the Hubble constant from a single event is expected using the dark siren method, a multifold increase in the LVC event rate is anticipated in the coming years and combinations of many sirens will lead to improved constraints on H 0

    Localization and broadband follow-up of the gravitational-wave transient GW150914

    Get PDF
    A gravitational-wave (GW) transient was identified in data recorded by the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO) detectors on 2015 September 14. The event, initially designated G184098 and later given the name GW150914, is described in detail elsewhere. By prior arrangement, preliminary estimates of the time, significance, and sky location of the event were shared with 63 teams of observers covering radio, optical, near-infrared, X-ray, and gamma-ray wavelengths with ground- and space-based facilities. In this Letter we describe the low-latency analysis of the GW data and present the sky localization of the first observed compact binary merger. We summarize the follow-up observations reported by 25 teams via private Gamma-ray Coordinates Network circulars, giving an overview of the participating facilities, the GW sky localization coverage, the timeline, and depth of the observations. As this event turned out to be a binary black hole merger, there is little expectation of a detectable electromagnetic (EM) signature. Nevertheless, this first broadband campaign to search for a counterpart of an Advanced LIGO source represents a milestone and highlights the broad capabilities of the transient astronomy community and the observing strategies that have been developed to pursue neutron star binary merger events. Detailed investigations of the EM data and results of the EM follow-up campaign are being disseminated in papers by the individual teams
    corecore