46 research outputs found
Large expert-curated database for benchmarking document similarity detection in biomedical literature search
Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
Heterologous Production of Microbial Ribosomally Synthesized and Post-translationally Modified Peptides
Ribosomally synthesized and post-translationally modified peptides, or RiPPs, which have mainly isolated from microbes as well as plants and animals, are an ever-expanding group of peptidic natural products with diverse chemical structures and biological activities. They have emerged as a major category of secondary metabolites partly due to a myriad of microbial genome sequencing endeavors and the availability of genome mining software in the past two decades. Heterologous expression of RiPP gene clusters mined from microbial genomes, which are often silent in native producers, in surrogate hosts such as Escherichia coli and Streptomyces strains can be an effective way to elucidate encoded peptides and produce novel derivatives. Emerging strategies have been developed to facilitate the success of the heterologous expression by targeting multiple synthetic biology levels, including individual proteins, pathways, metabolic flux and hosts. This review describes recent advances in heterologous production of RiPPs, mainly from microbes, with a focus on E. coli and Streptomyces strains as the surrogate hosts
A distributive peptide cyclase processes multiple microviridin core peptides within a single polypeptide substrate
Microviridins belong to the family of ribosomally synthesized and post-translationally modified peptides (RiPPs). Here, the authors discover a microviridin-synthesizing enzyme in a cyanobacterium that modifies multiple core peptides from a single substrate in a distributive and unstrictly directional manner, an unusual biosynthetic logic for RiPPs
The Ferric-Superoxo Intermediate of the TxtE Nitration Pathway Resists Reduction, Facilitating Its Reaction with Nitric Oxide
Biochemical and structural characterization of <i>Haemophilus influenzae</i> nitroreductase in metabolizing nitroimidazoles
The nitroreductase of Haemophilus influenzae metabolizes clinically used nitroimidazoles, generates dimeric metabolites and anaerobically sensitizes an E. coli mutant to antibiotics. We further uncover its biochemical and structural details.</jats:p
Promiscuous Pathogenicity Islands and Phylogeny of Pathogenic <i>Streptomyces</i> spp.
Approximately 10 Streptomyces species cause disease on underground plant structures. The most economically important of these is potato scab, and the most studied of these pathogens is Streptomyces scabiei (syn. S. scabies). The main pathogenicity determinant of scab-causing Streptomyces species is a nitrated diketopiperazine, known as thaxtomin A (ThxA). In the pathogenic species Streptomyces turgidiscabies, ThxA biosynthetic genes reside on a mobile pathogenicity island (PAI). However, the mobilization of PAIs in other Streptomyces species remains uncharacterized. Here, we investigated the mobilization of the PAI of S. scabiei 87-22. Based on whole genome sequences, we inferred the evolutionary relationships of pathogenic Streptomyces species and discovered that Streptomyces sp. strain 96-12, a novel pathogenic species isolated from potatoes in Egypt, was phylogenetically grouped with nonpathogenic species rather than with known pathogenic species. We also found that Streptomyces sp. strain 96-12 contains a PAI that is almost identical to the PAI in S. scabiei 87-22, despite significant differences in their genome sequences. This suggested direct or indirect in vivo mobilization of the PAI between S. scabiei and nonpathogenic Streptomyces species. To test whether the S. scabiei 87-22 PAI could, indeed, be mobilized, S. scabiei 87-22 deletion mutants containing antibiotic resistance markers in the PAI were mated with Streptomyces diastatochromogenes, a nonpathogenic species. The PAI of S. scabiei was site-specifically inserted into the aviX1 gene of S. diastatochromogenes and conferred pathogenicity in radish seedling assays. Our results demonstrated that S. scabiei, the earliest described Streptomyces pathogen, could be the source of a PAI responsible for the emergence of novel pathogenic species. </jats:p
