43 research outputs found

    Will we observe black holes at LHC?

    Get PDF
    The generalized uncertainty principle, motivated by string theory and non-commutative quantum mechanics, suggests significant modifications to the Hawking temperature and evaporation process of black holes. For extra-dimensional gravity with Planck scale O(TeV), this leads to important changes in the formation and detection of black holes at the the Large Hadron Collider. The number of particles produced in Hawking evaporation decreases substantially. The evaporation ends when the black hole mass is Planck scale, leaving a remnant and a consequent missing energy of order TeV. Furthermore, the minimum energy for black hole formation in collisions is increased, and could even be increased to such an extent that no black holes are formed at LHC energies.Comment: 5 pages, 2 figures. Minor changes to match version to appear in Class. Quant. Gra

    Search for gravitational waves associated with the InterPlanetary Network short gamma ray bursts

    Full text link
    We outline the scientific motivation behind a search for gravitational waves associated with short gamma ray bursts detected by the InterPlanetary Network (IPN) during LIGO's fifth science run and Virgo's first science run. The IPN localisation of short gamma ray bursts is limited to extended error boxes of different shapes and sizes and a search on these error boxes poses a series of challenges for data analysis. We will discuss these challenges and outline the methods to optimise the search over these error boxes.Comment: Methods paper; Proceedings for Eduardo Amaldi 9 Conference on Gravitational Waves, July 2011, Cardiff, U

    Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817

    No full text
    In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz

    GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs

    Get PDF
    We present the results from three gravitational-wave searches for coalescing compact binaries with component masses above 1  M⊙ during the first and second observing runs of the advanced gravitational-wave detector network. During the first observing run (O1), from September 12, 2015 to January 19, 2016, gravitational waves from three binary black hole mergers were detected. The second observing run (O2), which ran from November 30, 2016 to August 25, 2017, saw the first detection of gravitational waves from a binary neutron star inspiral, in addition to the observation of gravitational waves from a total of seven binary black hole mergers, four of which we report here for the first time: GW170729, GW170809, GW170818, and GW170823. For all significant gravitational-wave events, we provide estimates of the source properties. The detected binary black holes have total masses between 18.6−0.7+3.2  M⊙ and 84.4−11.1+15.8  M⊙ and range in distance between 320−110+120 and 2840−1360+1400  Mpc. No neutron star-black hole mergers were detected. In addition to highly significant gravitational-wave events, we also provide a list of marginal event candidates with an estimated false-alarm rate less than 1 per 30 days. From these results over the first two observing runs, which include approximately one gravitational-wave detection per 15 days of data searched, we infer merger rates at the 90% confidence intervals of 110−3840  Gpc−3 y−1 for binary neutron stars and 9.7−101  Gpc−3 y−1 for binary black holes assuming fixed population distributions and determine a neutron star-black hole merger rate 90% upper limit of 610  Gpc−3 y−1

    First narrow-band search for continuous gravitational waves from known pulsars in advanced detector data

    Get PDF
    In Advanced LIGO, detection and astrophysical source parameter estimation of the binary black hole merger GW150914 requires a calibrated estimate of the gravitational-wave strain sensed by the detectors. Producing an estimate from each detector's differential arm length control loop readout signals requires applying time domain filters, which are designed from a frequency domain model of the detector's gravitational-wave response. The gravitational-wave response model is determined by the detector's opto-mechanical response and the properties of its feedback control system. The measurements used to validate the model and characterize its uncertainty are derived primarily from a dedicated photon radiation pressure actuator, with cross-checks provided by optical and radio frequency references. We describe how the gravitational-wave readout signal is calibrated into equivalent gravitational-wave-induced strain and how the statistical uncertainties and systematic errors are assessed. Detector data collected over 38 calendar days, from September 12 to October 20, 2015, contain the event GW150914 and approximately 16 of coincident data used to estimate the event false alarm probability. The calibration uncertainty is less than 10% in magnitude and 10 degrees in phase across the relevant frequency band 20 Hz to 1 kHz

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Effects of waveform model systematics on the interpretation of GW150914

    Get PDF
    PAPER Effects of waveform model systematics on the interpretation of GW150914 B P Abbott1, R Abbott1, T D Abbott2, M R Abernathy3, F Acernese4,5, K Ackley6, C Adams7, T Adams8, P Addesso9,144, R X Adhikari1, V B Adya10, C Affeldt10, M Agathos11, K Agatsuma11, N Aggarwal12, O D Aguiar13, L Aiello14,15, A Ain16, P Ajith17, B Allen10,18,19, A Allocca20,21, P A Altin22, A Ananyeva1, S B Anderson1, W G Anderson18, S Appert1, K Arai1, M C Araya1, J S Areeda23, N Arnaud24, K G Arun25, S Ascenzi15,26, G Ashton10, M Ast27, S M Aston7, P Astone28, P Aufmuth19, C Aulbert10, A Avila-Alvarez23, S Babak29, P Bacon30, M K M Bader11, P T Baker31, F Baldaccini32,33, G Ballardin34, S W Ballmer35, J C Barayoga1, S E Barclay36, B C Barish1, D Barker37, F Barone4,5, B Barr36, L Barsotti12, M Barsuglia30, D Barta38, J Bartlett37, I Bartos39, R Bassiri40, A Basti20,21, J C Batch37, C Baune10, V Bavigadda34, M Bazzan41,42, C Beer10, M Bejger43, I Belahcene24, M Belgin44, A S Bell36, B K Berger1, G Bergmann10, C P L Berry45, D Bersanetti46,47, A Bertolini11, J Betzwieser7, S Bhagwat35, R Bhandare48, I A Bilenko49, G Billingsley1, C R Billman6, J Birch7, R Birney50, O Birnholtz10, S Biscans1,12, A Bisht19, M Bitossi34, C Biwer35, M A Bizouard24, J K Blackburn1, J Blackman51, C D Blair52, D G Blair52, R M Blair37, S Bloemen53, O Bock10, M Boer54, G Bogaert54, A Bohe29, F Bondu55, R Bonnand8, B A Boom11, R Bork1, V Boschi20,21, S Bose16,56, Y Bouffanais30, A Bozzi34, C Bradaschia21, P R Brady18, V B Braginsky49,145, M Branchesi57,58, J E Brau59, T Briant60, A Brillet54, M Brinkmann10, V Brisson24, P Brockill18, J E Broida61, A F Brooks1, D A Brown35, D D Brown45, N M Brown12, S Brunett1, C C Buchanan2, A Buikema12, T Bulik62, H J Bulten11,63, A Buonanno29,64, D Buskulic8, C Buy30, R L Byer40, M Cabero10, L Cadonati44, G Cagnoli65,66, C Cahillane1, J Calderón Bustillo44, T A Callister1, E Calloni5,67, J B Camp68, K C Cannon69, H Cao70, J Cao71, C D Capano10, E Capocasa30, F Carbognani34, S Caride72, J Casanueva Diaz24, C Casentini15,26, S Caudill18, M Cavaglià73, F Cavalier24, R Cavalieri34, G Cella21, C B Cepeda1, L Cerboni Baiardi57,58, G Cerretani20,21, E Cesarini15,26, S J Chamberlin74, M Chan36, S Chao75, P Charlton76, E Chassande-Mottin30, B D Cheeseboro31, H Y Chen77, Y Chen51, H-P Cheng6, A Chincarini47, A Chiummo34, T Chmiel78, H S Cho79, M Cho64, J H Chow22, N Christensen61, Q Chu52, A J K Chua80, S Chua60, S Chung52, G Ciani6, F Clara37, J A Clark44, F Cleva54, C Cocchieri73, E Coccia14,15, P-F Cohadon60, A Colla28,81, C G Collette82, L Cominsky83, M Constancio Jr13, L Conti42, S J Cooper45, T R Corbitt2, N Cornish84, A Corsi72, S Cortese34, C A Costa13, M W Coughlin61, S B Coughlin85, J-P Coulon54, S T Countryman39, P Couvares1, P B Covas86, E E Cowan44, D M Coward52, M J Cowart7, D C Coyne1, R Coyne72, J D E Creighton18, T D Creighton87, J Cripe2, S G Crowder88, T J Cullen23, A Cumming36, L Cunningham36, E Cuoco34, T Dal Canton68, S L Danilishin36, S D'Antonio15, K Danzmann10,19, A Dasgupta89, C F Da Silva Costa6, V Dattilo34, I Dave48, M Davier24, G S Davies36, D Davis35, E J Daw90, B Day44, R Day34, S De35, D DeBra40, G Debreczeni38, J Degallaix65, M De Laurentis5,67, S Deléglise60, W Del Pozzo45, T Denker10, T Dent10, V Dergachev29, R De Rosa5,67, R T DeRosa7, R DeSalvo91, J Devenson50, R C Devine31, S Dhurandhar16, M C Díaz87, L Di Fiore5, M Di Giovanni92,93, T Di Girolamo5,67, A Di Lieto20,21, S Di Pace28,81, I Di Palma28,29,81, A Di Virgilio21, Z Doctor77, V Dolique65, F Donovan12, K L Dooley73, S Doravari10, I Dorrington94, R Douglas36, M Dovale Álvarez45, T P Downes18, M Drago10, R W P Drever1,146, J C Driggers37, Z Du71, M Ducrot8, S E Dwyer37, T B Edo90, M C Edwards61, A Effler7, H-B Eggenstein10, P Ehrens1, J Eichholz1, S S Eikenberry6, R A Eisenstein12, R C Essick12, Z Etienne31, T Etzel1, M Evans12, T M Evans7, R Everett74, M Factourovich39, V Fafone14,15,26, H Fair35, S Fairhurst94, X Fan71, S Farinon47, B Farr77, W M Farr45, E J Fauchon-Jones94, M Favata95, M Fays94, H Fehrmann10, M M Fejer40, A Fernández Galiana12, I Ferrante20,21, E C Ferreira13, F Ferrini34, F Fidecaro20,21, I Fiori34, D Fiorucci30, R P Fisher35, R Flaminio65,96, M Fletcher36, H Fong97, S S Forsyth44, J-D Fournier54, S Frasca28,81, F Frasconi21, Z Frei98, A Freise45, R Frey59, V Frey24, E M Fries1, P Fritschel12, V V Frolov7, P Fulda6,68, M Fyffe7, H Gabbard10, B U Gadre16, S M Gaebel45, J R Gair99, L Gammaitoni32, S G Gaonkar16, F Garufi5,67, G Gaur100, V Gayathri101, N Gehrels68, G Gemme47, E Genin34, A Gennai21, J George48, L Gergely102, V Germain8, S Ghonge17, Abhirup Ghosh17, Archisman Ghosh11,17, S Ghosh11,53, J A Giaime2,7, K D Giardina7, A Giazotto21, K Gill103, A Glaefke36, E Goetz10, R Goetz6, L Gondan98, G González2, J M Gonzalez Castro20,21, A Gopakumar104, M L Gorodetsky49, S E Gossan1, M Gosselin34, R Gouaty8, A Grado5,105, C Graef36, M Granata65, A Grant36, S Gras12, C Gray37, G Greco57,58, A C Green45, P Groot53, H Grote10, S Grunewald29, G M Guidi57,58, X Guo71, A Gupta16, M K Gupta89, K E Gushwa1, E K Gustafson1, R Gustafson106, J J Hacker23, B R Hall56, E D Hall1, G Hammond36, M Haney104, M M Hanke10, J Hanks37, C Hanna74, M D Hannam94, J Hanson7, T Hardwick2, J Harms57,58, G M Harry3, I W Harry29, M J Hart36, M T Hartman6, C-J Haster45,97, K Haughian36, J Healy107, A Heidmann60, M C Heintze7, H Heitmann54, P Hello24, G Hemming34, M Hendry36, I S Heng36, J Hennig36, J Henry107, A W Heptonstall1, M Heurs10,19, S Hild36, D Hoak34, D Hofman65, K Holt7, D E Holz77, P Hopkins94, J Hough36, E A Houston36, E J Howell52, Y M Hu10, E A Huerta108, D Huet24, B Hughey103, S Husa86, S H Huttner36, T Huynh-Dinh7, N Indik10, D R Ingram37, R Inta72, H N Isa36, J-M Isac60, M Isi1, T Isogai12, B R Iyer17, K Izumi37, T Jacqmin60, K Jani44, P Jaranowski109, S Jawahar110, F Jiménez-Forteza86, W W Johnson2, D I Jones111, R Jones36, R J G Jonker11, L Ju52, J Junker10, C V Kalaghatgi94, V Kalogera85, S Kandhasamy73, G Kang79, J B Kanner1, S Karki59, K S Karvinen10, M Kasprzack2, E Katsavounidis12, W Katzman7, S Kaufer19, T Kaur52, K Kawabe37, F Kéfélian54, D Keitel86, D B Kelley35, R Kennedy90, J S Key112, F Y Khalili49, I Khan14, S Khan94, Z Khan89, E A Khazanov113, N Kijbunchoo37, Chunglee Kim114, J C Kim115, Whansun Kim116, W Kim70, Y-M Kim114,117, S J Kimbrell44, E J King70, P J King37, R Kirchhoff10, J S Kissel37, B Klein85, L Kleybolte27, S Klimenko6, P Koch10, S M Koehlenbeck10, S Koley11, V Kondrashov1, A Kontos12, M Korobko27, W Z Korth1, I Kowalska62, D B Kozak1, C Krämer10, V Kringel10, B Krishnan10, A Królak118,119, G Kuehn10, P Kumar97, R Kumar89, L Kuo75, A Kutynia118, B D Lackey29,35, M Landry37, R N Lang18, J Lange107, B Lantz40, R K Lanza12, A Lartaux-Vollard24, P D Lasky120, M Laxen7, A Lazzarini1, C Lazzaro42, P Leaci28,81, S Leavey36, E O Lebigot30, C H Lee117, H K Lee121, H M Lee114, K Lee36, J Lehmann10, A Lenon31, M Leonardi92,93, J R Leong10, N Leroy24, N Letendre8, Y Levin120, T G F Li122, A Libson12, T B Littenberg123, J Liu52, N A Lockerbie110, A L Lombardi44, L T London94, J E Lord35, M Lorenzini14,15, V Loriette124, M Lormand7, G Losurdo21, J D Lough10,19, G Lovelace23, H Lück10,19, A P Lundgren10, R Lynch12, Y Ma51, S Macfoy50, B Machenschalk10, M MacInnis12, D M Macleod2, F Magaña-Sandoval35, E Majorana28, I Maksimovic124, V Malvezzi15,26, N Man54, V Mandic125, V Mangano36, G L Mansell22, M Manske18, M Mantovani34, F Marchesoni33,126, F Marion8, S Márka39, Z Márka39, A S Markosyan40, E Maros1, F Martelli57,58, L Martellini54, I W Martin36, D V Martynov12, K Mason12, A Masserot8, T J Massinger1, M Masso-Reid36, S Mastrogiovanni28,81, F Matichard1,12, L Matone39, N Mavalvala12, N Mazumder56, R McCarthy37, D E McClelland22, S McCormick7, C McGrath18, S C McGuire127, G McIntyre1, J McIver1, D J McManus22, T McRae22, S T McWilliams31, D Meacher54,74, G D Meadors10,29, J Meidam11, A Melatos128, G Mendell37, D Mendoza-Gandara10, R A Mercer18, E L Merilh37, M Merzougui54, S Meshkov1, C Messenger36, C Messick74, R Metzdorff60, P M Meyers125, F Mezzani28,81, H Miao45, C Michel65, H Middleton45, E E Mikhailov129, L Milano5,67, A L Miller6,28,81, A Miller85, B B Miller85, J Miller12, M Millhouse84, Y Minenkov15, J Ming29, S Mirshekari130, C Mishra17, S Mitra16, V P Mitrofanov49, G Mitselmakher6, R Mittleman12, A Moggi21, M Mohan34, S R P Mohapatra12, M Montani57,58, B C Moore95, C J Moore80, D Moraru37, G Moreno37, S R Morriss87, B Mours8, C M Mow-Lowry45, G Mueller6, A W Muir94, Arunava Mukherjee17, D Mukherjee18, S Mukherjee87, N Mukund16, A Mullavey7, J Munch70, E A M Muniz23, P G Murray36, A Mytidis6, K Napier44, I Nardecchia15,26, L Naticchioni28,81, G Nelemans11,53, T J N Nelson7, M Neri46,47, M Nery10, A Neunzert106, J M Newport3, G Newton36, T T Nguyen22, A B Nielsen10, S Nissanke11,53, A Nitz10, A Noack10, F Nocera34, D Nolting7, M E N Normandin87, L K Nuttall35, J Oberling37, E Ochsner18, E Oelker12, G H Ogin131, J J Oh116, S H Oh116, F Ohme10,94, M Oliver86, P Oppermann10, Richard J Oram7, B O'Reilly7, R O'Shaughnessy107, D J Ottaway70, H Overmier7, B J Owen72, A E Pace74, J Page123, A Pai101, S A Pai48, J R Palamos59, O Palashov113, C Palomba28, A Pal-Singh27, H Pan75, C Pankow85, F Pannarale94, B C Pant48, F Paoletti21,34, A Paoli34, M A Papa10,18,29, H R Paris40, W Parker7, D Pascucci36, A Pasqualetti34, R Passaquieti20,21, D Passuello21, B Patricelli20,21, B L Pearlstone36, M Pedraza1, R Pedurand65,132, L Pekowsky35, A Pele7, S Penn133, C J Perez37, A Perreca1, L M Perri85, H P Pfeiffer97, M Phelps36, O J Piccinni28,81, M Pichot54, F Piergiovanni57,58, V Pierro9, G Pillant34, L Pinard65, I M Pinto9, M Pitkin36, M Poe18, R Poggiani20,21, P Popolizio34, A Post10, J Powell36, J Prasad16, J W W Pratt103, V Predoi94, T Prestegard18,125, M Prijatelj10,34, M Principe9, S Privitera29, G A Prodi92,93, L G Prokhorov49, O Puncken10, M Punturo33, P Puppo28, M Pürrer29, H Qi18, J Qin52, S Qiu120, V Quetschke87, E A Quintero1, R Quitzow-James59, F J Raab37, D S Rabeling22, H Radkins37, P Raffai98, S Raja48, C Rajan48, M Rakhmanov87, P Rapagnani28,81, V Raymond29, M Razzano20,21, V Re26, J Read23, T Regimbau54, L Rei47, S Reid50, D H Reitze1,6, H Rew129, S D Reyes35, E Rhoades103, F Ricci28,81, K Riles106, M Rizzo107, N A Robertson1,36, R Robie36, F Robinet24, A Rocchi15, L Rolland8, J G Rollins1, V J Roma59, J D Romano87, R Romano4,5, J H Romie7, D Rosińska43,134, S Rowan36, A Rüdiger10, P Ruggi34, K Ryan37, S Sachdev1, T Sadecki37, L Sadeghian18, M Sakellariadou135, L Salconi34, M Saleem101, F Salemi10, A Samajdar136, L Sammut120, L M Sampson85, E J Sanchez1, V Sandberg37, J R Sanders35, B Sassolas65, B S Sathyaprakash74,94, P R Saulson35, O Sauter106, R L Savage37, A Sawadsky19, P Schale59, J Scheuer85, E Schmidt103, J Schmidt10, P Schmidt1,51, R Schnabel27, R M S Schofield59, A Schönbeck27, E Schreiber10, D Schuette10,19, B F Schutz29,94, S G Schwalbe103, J Scott36, S M Scott22, D Sellers7, A S Sengupta137, D Sentenac34, V Sequino15,26, A Sergeev113, Y Setyawati11,53, D A Shaddock22, T J Shaffer37, M S Shahriar85, B Shapiro40, P Shawhan64, A Sheperd18, D H Shoemaker12, D M Shoemaker44, K Siellez44, X Siemens18, M Sieniawska43, D Sigg37, A D Silva13, A Singer1, L P Singer68, A Singh10,19,29, R Singh2, A Singhal14, A M Sintes86, B J J Slagmolen22, B Smith7, J R Smith23, R J E Smith1, E J Son116, B Sorazu36, F Sorrentino47, T Souradeep16, A P Spencer36, A K Srivastava89, A Staley39, M Steinke10, J Steinlechner36, S Steinlechner27,36, D Steinmeyer10,19, B C Stephens18, S P Stevenson45, R Stone87, K A Strain36, N Straniero65, G Stratta57,58, S E Strigin49, R Sturani130, A L Stuver7, T Z Summerscales138, L Sun128, S Sunil89, P J Sutton94, B L Swinkels34, M J Szczepańczyk103, M Tacca30, D Talukder59, D B Tanner6, M Tápai102, A Taracchini29, R Taylor1, T Theeg10, E G Thomas45, M Thomas7, P Thomas37, K A Thorne7, E Thrane120, T Tippens44, S Tiwari14,93, V Tiwari94, K V Tokmakov110, K Toland36, C Tomlinson90, M Tonelli20,21, Z Tornasi36, C I Torrie1, D Töyrä45, F Travasso32,33, G Traylor7, D Trifirò73, J Trinastic6, M C Tringali92,93, L Trozzo21,139, M Tse12, R Tso1, M Turconi54, D Tuyenbayev87, D Ugolini140, C S Unnikrishnan104, A L Urban1, S A Usman94, H Vahlbruch19, G Vajente1, G Valdes87, N van Bakel11, M van Beuzekom11, J F J van den Brand11,63, C Van Den Broeck11, D C Vander-Hyde35, L van der Schaaf11, J V van Heijningen11, A A van Veggel36, M Vardaro41,42, V Varma51, S Vass1, M Vasúth38, A Vecchio45, G Vedovato42, J Veitch45, P J Veitch70, K Venkateswara141, G Venugopalan1, D Verkindt8, F Vetrano57,58, A Viceré57,58, A D Viets18, S Vinciguerra45, D J Vine50, J-Y Vinet54, S Vitale12, T Vo35, H Vocca32,33, C Vorvick37, D V Voss6, W D Vousden45, S P Vyatchanin49, A R Wade1, L E Wade78, M Wade78, M Walker2, L Wallace1, S Walsh10,29, G Wang14,58, H Wang45, M Wang45, Y Wang52, R L Ward22, J Warner37, M Was8, J Watchi82, B Weaver37, L-W Wei54, M Weinert10, A J Weinstein1, R Weiss12, L Wen52, P Weßels10, T Westphal10, K Wette10, J T Whelan107, B F Whiting6, C Whittle120, D Williams36, R D Williams1, A R Williamson94, J L Willis142, B Willke10,19, M H Wimmer10,19, W Winkler10, C C Wipf1, H Wittel10,19, G Woan36, J Woehler10, J Worden37, J L Wright36, D S Wu10, G Wu7, W Yam12, H Yamamoto1, C C Yancey64, M J Yap22, Hang Yu12, Haocun Yu12, M Yvert8, A Zadrożny118, L Zangrando42, M Zanolin103, J-P Zendri42, M Zevin85, L Zhang1, M Zhang129, T Zhang36, Y Zhang107, C Zhao52, M Zhou85, Z Zhou85, S J Zhu10,29, X J Zhu52, M E Zucker1,12, J Zweizig1 (LIGO Scientific Collaboration, Virgo Collaboration), M Boyle143, T Chu97, D Hemberger51, I Hinder29, L E Kidder143, S Ossokine29, M Scheel51, B Szilagyi51, S Teukolsky143 and A Vano Vinuales94 Hide full author list Published 12 April 2017 • © 2017 IOP Publishing Ltd Classical and Quantum Gravity, Volume 34, Number 10 Focus Issue: Gravitational Waves Article PDF Figures References Citations PDF 258 Total downloads Cited by 1 articles Article has an altmetric score of 3 Turn on MathJax Get permission to re-use this article Share this article Article information Abstract Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than ~0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations

    Search for long-lived gravitational-wave transients coincident with long gamma-ray bursts

    Get PDF
    Long gamma-ray bursts (GRBs) have been linked to extreme core-collapse supernovae from massive stars. Gravitational waves (GW) offer a probe of the physics behind long GRBs. We investigate models of long-lived (~10–1000 s) GW emission associated with the accretion disk of a collapsed star or with its protoneutron star remnant. Using data from LIGO’s fifth science run, and GRB triggers from the Swift experiment, we perform a search for unmodeled long-lived GW transients. Finding no evidence of GW emission, we place 90% confidence-level upper limits on the GW fluence at Earth from long GRBs for three waveforms inspired by a model of GWs from accretion disk instabilities. These limits range from F<3:5 ergs cm⁻2 to F<1200 ergs cm⁻2, depending on the GRB and on the model, allowing us to probe optimistic scenarios of GW production out to distances as far as ≈ 33 Mpc. Advanced detectors are expected to achieve strain sensitivities 10× better than initial LIGO, potentially allowing us to probe the engines of the nearest long GRBs.J. Aasi ... D.J. Hosken ... W. Kim ... E.J. King ... J. Munch ... D. J. Ottaway ... P. J. Veitc

    Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence

    Get PDF
    We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations – including sources with two independent, precessing spins – we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported in LVC-PE[1] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Followup simulations performed using previously-estimated binary parameters most resemble the data, even when all quadrupolar and octopolar modes are included. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz ∈ [64M� − 82M�], mass ratio 1/q = m2/m1 ∈ [0.6, 1], and effective aligned spin χeff ∈ [−0.3, 0.2], where χeff = (S1/m1 + S2/m2) · Lˆ /M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Even accounting for precession, simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and χeff are consistent with the data. Though correlated, the components’ spins (both in magnitude and directions) are not significantly constrained by the data: the data is consistent with simulations with component spin magnitudes a1,2 up to at least 0.8, with random orientations. Further detailed followup calculations are needed to determine if the data contain a weak imprint from transverse (precessing) spins. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole’s redshifted mass is consistent with Mf,z in the range 64.0M� − 73.5M� and the final black hole’s dimensionless spin parameter is consistent with af = 0.62 − 0.73. As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to LVC-PE[1]

    All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in the data of the LIGO Hanford and LIGO Livingston second generation detectors between September 2015 and January 2016 , with a total observational time of 49 d. The search targets gravitational wave transients of 10 – 500 s duration in a frequency band of 24 – 2048 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. No significant events were observed. As a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also show that the search is sensitive to sources in the Galaxy emitting at least ∼ 10 − 8 M c 2 in gravitational waves
    corecore