108 research outputs found

    Ascorbic acid extends replicative life span of human embryonic fibroblast by reducing DNA and mitochondrial damages

    Get PDF
    Ascorbic acid has been reported to extend replicative life span of human embryonic fibroblast (HEF). Since the detailed molecular mechanism of this phenomenon has not been investigated, we attempted to elucidate. Continuous treatment of HEF cells with ascorbic acid (at 200 µM) from 40 population doubling (PD) increased maximum PD numbers by 18% and lowered SA-β-gal positive staining, an aging marker, by 2.3 folds, indicating that ascorbic acid extends replicative life span of HEF cells. Ascorbic acid treatment lowered DCFH by about 7 folds and Rho123 by about 70%, suggesting that ascorbic acid dramatically decreased ROS formation. Ascorbic acid also increased aconitase activity, a marker of mitochondrial aging, by 41%, indicating that ascorbic acid treatment restores age-related decline of mitochondrial function. Cell cycle analysis by flow cytometry revealed that ascorbic acid treatment decreased G1 population up to 12%. Further western blot analysis showed that ascorbic acid treatment decreased levels of p53, phospho-p53 at ser 15, and p21, indicating that ascorbic acid relieved senescence-related G1 arrest. Analysis of AP (apurinic/apyrimidinic) sites showed that ascorbic acid treatment decreased AP site formation by 35%. We also tested the effect of hydrogen peroxide treatment, as an additional oxidative stress. Continuous treatment of 20 µM of hydrogen peroxide from PD 40 of HEF cells resulted in premature senescence due to increased ROS level, and increased AP sites. Taken together, the results suggest that ascorbic acid extends replicative life span of HEF cells by reducing mitochondrial and DNA damages through lowering cellular ROS

    Exploring the impact of the level of absorptive capacity in technology development firms

    Get PDF
    Absorptive capacity (ACAP) is widely recognized as an effective means of obtaining and sustaining a competitive advantage. Although ACAP was globally introduced decades ago, researchers from Central and Eastern Europe have since underestimated its importance. The research objective of this paper is to answer the following questions: how does the level of ACAP influence the performances of technology-driven firms, and how does it catalyse their innovation outputs? Furthermore, we argue that exporting technology-driven firms possess even higher levels of ACAP than those who are weak or not-at-all exporters. ACAP measured value is examined alongside the innovation outputs of firms and their business performance, with an extended focus on exporters. A selected population of >600 Croatian firms were asked to fill in the questionnaire. Out of the 103 firms that completed the survey, 45 were recognized as intensive technology development performers, and 34 were identified as large exporters. Both populations were tested against formulated hypotheses, ultimately proving that higher levels of ACAP can be seen to positively drive innovation performance which, notably, can be seen most clearly with exporters

    HLA-DQA1*05 carriage associated with development of anti-drug antibodies to infliximab and adalimumab in patients with Crohn's Disease

    Get PDF
    Anti-tumor necrosis factor (anti-TNF) therapies are the most widely used biologic drugs for treating immune-mediated diseases, but repeated administration can induce the formation of anti-drug antibodies. The ability to identify patients at increased risk for development of anti-drug antibodies would facilitate selection of therapy and use of preventative strategies.This article is freely available via Open Access. Click on Publisher URL to access the full-text

    Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study.

    Get PDF
    Background: Acute illness, existing co-morbidities and surgical stress response can all contribute to postoperative acute kidney injury (AKI) in patients undergoing major gastrointestinal surgery. The aim of this study was prospectively to develop a pragmatic prognostic model to stratify patients according to risk of developing AKI after major gastrointestinal surgery. Methods: This prospective multicentre cohort study included consecutive adults undergoing elective or emergency gastrointestinal resection, liver resection or stoma reversal in 2-week blocks over a continuous 3-month period. The primary outcome was the rate of AKI within 7 days of surgery. Bootstrap stability was used to select clinically plausible risk factors into the model. Internal model validation was carried out by bootstrap validation. Results: A total of 4544 patients were included across 173 centres in the UK and Ireland. The overall rate of AKI was 14·2 per cent (646 of 4544) and the 30-day mortality rate was 1·8 per cent (84 of 4544). Stage 1 AKI was significantly associated with 30-day mortality (unadjusted odds ratio 7·61, 95 per cent c.i. 4·49 to 12·90; P < 0·001), with increasing odds of death with each AKI stage. Six variables were selected for inclusion in the prognostic model: age, sex, ASA grade, preoperative estimated glomerular filtration rate, planned open surgery and preoperative use of either an angiotensin-converting enzyme inhibitor or an angiotensin receptor blocker. Internal validation demonstrated good model discrimination (c-statistic 0·65). Discussion: Following major gastrointestinal surgery, AKI occurred in one in seven patients. This preoperative prognostic model identified patients at high risk of postoperative AKI. Validation in an independent data set is required to ensure generalizability

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    All-sky search for long-duration gravitational wave transients in the first Advanced LIGO observing run

    Get PDF
    We present the results of a search for long-duration gravitational wave transients in the data of the LIGO Hanford and LIGO Livingston second generation detectors between September 2015 and January 2016 , with a total observational time of 49 d. The search targets gravitational wave transients of 10 – 500 s duration in a frequency band of 24 – 2048 Hz, with minimal assumptions about the signal waveform, polarization, source direction, or time of occurrence. No significant events were observed. As a result we set 90% confidence upper limits on the rate of long-duration gravitational wave transients for different types of gravitational wave signals. We also show that the search is sensitive to sources in the Galaxy emitting at least ∼ 10 − 8 M c 2 in gravitational waves

    Effects of waveform model systematics on the interpretation of GW150914

    Get PDF
    PAPER Effects of waveform model systematics on the interpretation of GW150914 B P Abbott1, R Abbott1, T D Abbott2, M R Abernathy3, F Acernese4,5, K Ackley6, C Adams7, T Adams8, P Addesso9,144, R X Adhikari1, V B Adya10, C Affeldt10, M Agathos11, K Agatsuma11, N Aggarwal12, O D Aguiar13, L Aiello14,15, A Ain16, P Ajith17, B Allen10,18,19, A Allocca20,21, P A Altin22, A Ananyeva1, S B Anderson1, W G Anderson18, S Appert1, K Arai1, M C Araya1, J S Areeda23, N Arnaud24, K G Arun25, S Ascenzi15,26, G Ashton10, M Ast27, S M Aston7, P Astone28, P Aufmuth19, C Aulbert10, A Avila-Alvarez23, S Babak29, P Bacon30, M K M Bader11, P T Baker31, F Baldaccini32,33, G Ballardin34, S W Ballmer35, J C Barayoga1, S E Barclay36, B C Barish1, D Barker37, F Barone4,5, B Barr36, L Barsotti12, M Barsuglia30, D Barta38, J Bartlett37, I Bartos39, R Bassiri40, A Basti20,21, J C Batch37, C Baune10, V Bavigadda34, M Bazzan41,42, C Beer10, M Bejger43, I Belahcene24, M Belgin44, A S Bell36, B K Berger1, G Bergmann10, C P L Berry45, D Bersanetti46,47, A Bertolini11, J Betzwieser7, S Bhagwat35, R Bhandare48, I A Bilenko49, G Billingsley1, C R Billman6, J Birch7, R Birney50, O Birnholtz10, S Biscans1,12, A Bisht19, M Bitossi34, C Biwer35, M A Bizouard24, J K Blackburn1, J Blackman51, C D Blair52, D G Blair52, R M Blair37, S Bloemen53, O Bock10, M Boer54, G Bogaert54, A Bohe29, F Bondu55, R Bonnand8, B A Boom11, R Bork1, V Boschi20,21, S Bose16,56, Y Bouffanais30, A Bozzi34, C Bradaschia21, P R Brady18, V B Braginsky49,145, M Branchesi57,58, J E Brau59, T Briant60, A Brillet54, M Brinkmann10, V Brisson24, P Brockill18, J E Broida61, A F Brooks1, D A Brown35, D D Brown45, N M Brown12, S Brunett1, C C Buchanan2, A Buikema12, T Bulik62, H J Bulten11,63, A Buonanno29,64, D Buskulic8, C Buy30, R L Byer40, M Cabero10, L Cadonati44, G Cagnoli65,66, C Cahillane1, J Calderón Bustillo44, T A Callister1, E Calloni5,67, J B Camp68, K C Cannon69, H Cao70, J Cao71, C D Capano10, E Capocasa30, F Carbognani34, S Caride72, J Casanueva Diaz24, C Casentini15,26, S Caudill18, M Cavaglià73, F Cavalier24, R Cavalieri34, G Cella21, C B Cepeda1, L Cerboni Baiardi57,58, G Cerretani20,21, E Cesarini15,26, S J Chamberlin74, M Chan36, S Chao75, P Charlton76, E Chassande-Mottin30, B D Cheeseboro31, H Y Chen77, Y Chen51, H-P Cheng6, A Chincarini47, A Chiummo34, T Chmiel78, H S Cho79, M Cho64, J H Chow22, N Christensen61, Q Chu52, A J K Chua80, S Chua60, S Chung52, G Ciani6, F Clara37, J A Clark44, F Cleva54, C Cocchieri73, E Coccia14,15, P-F Cohadon60, A Colla28,81, C G Collette82, L Cominsky83, M Constancio Jr13, L Conti42, S J Cooper45, T R Corbitt2, N Cornish84, A Corsi72, S Cortese34, C A Costa13, M W Coughlin61, S B Coughlin85, J-P Coulon54, S T Countryman39, P Couvares1, P B Covas86, E E Cowan44, D M Coward52, M J Cowart7, D C Coyne1, R Coyne72, J D E Creighton18, T D Creighton87, J Cripe2, S G Crowder88, T J Cullen23, A Cumming36, L Cunningham36, E Cuoco34, T Dal Canton68, S L Danilishin36, S D'Antonio15, K Danzmann10,19, A Dasgupta89, C F Da Silva Costa6, V Dattilo34, I Dave48, M Davier24, G S Davies36, D Davis35, E J Daw90, B Day44, R Day34, S De35, D DeBra40, G Debreczeni38, J Degallaix65, M De Laurentis5,67, S Deléglise60, W Del Pozzo45, T Denker10, T Dent10, V Dergachev29, R De Rosa5,67, R T DeRosa7, R DeSalvo91, J Devenson50, R C Devine31, S Dhurandhar16, M C Díaz87, L Di Fiore5, M Di Giovanni92,93, T Di Girolamo5,67, A Di Lieto20,21, S Di Pace28,81, I Di Palma28,29,81, A Di Virgilio21, Z Doctor77, V Dolique65, F Donovan12, K L Dooley73, S Doravari10, I Dorrington94, R Douglas36, M Dovale Álvarez45, T P Downes18, M Drago10, R W P Drever1,146, J C Driggers37, Z Du71, M Ducrot8, S E Dwyer37, T B Edo90, M C Edwards61, A Effler7, H-B Eggenstein10, P Ehrens1, J Eichholz1, S S Eikenberry6, R A Eisenstein12, R C Essick12, Z Etienne31, T Etzel1, M Evans12, T M Evans7, R Everett74, M Factourovich39, V Fafone14,15,26, H Fair35, S Fairhurst94, X Fan71, S Farinon47, B Farr77, W M Farr45, E J Fauchon-Jones94, M Favata95, M Fays94, H Fehrmann10, M M Fejer40, A Fernández Galiana12, I Ferrante20,21, E C Ferreira13, F Ferrini34, F Fidecaro20,21, I Fiori34, D Fiorucci30, R P Fisher35, R Flaminio65,96, M Fletcher36, H Fong97, S S Forsyth44, J-D Fournier54, S Frasca28,81, F Frasconi21, Z Frei98, A Freise45, R Frey59, V Frey24, E M Fries1, P Fritschel12, V V Frolov7, P Fulda6,68, M Fyffe7, H Gabbard10, B U Gadre16, S M Gaebel45, J R Gair99, L Gammaitoni32, S G Gaonkar16, F Garufi5,67, G Gaur100, V Gayathri101, N Gehrels68, G Gemme47, E Genin34, A Gennai21, J George48, L Gergely102, V Germain8, S Ghonge17, Abhirup Ghosh17, Archisman Ghosh11,17, S Ghosh11,53, J A Giaime2,7, K D Giardina7, A Giazotto21, K Gill103, A Glaefke36, E Goetz10, R Goetz6, L Gondan98, G González2, J M Gonzalez Castro20,21, A Gopakumar104, M L Gorodetsky49, S E Gossan1, M Gosselin34, R Gouaty8, A Grado5,105, C Graef36, M Granata65, A Grant36, S Gras12, C Gray37, G Greco57,58, A C Green45, P Groot53, H Grote10, S Grunewald29, G M Guidi57,58, X Guo71, A Gupta16, M K Gupta89, K E Gushwa1, E K Gustafson1, R Gustafson106, J J Hacker23, B R Hall56, E D Hall1, G Hammond36, M Haney104, M M Hanke10, J Hanks37, C Hanna74, M D Hannam94, J Hanson7, T Hardwick2, J Harms57,58, G M Harry3, I W Harry29, M J Hart36, M T Hartman6, C-J Haster45,97, K Haughian36, J Healy107, A Heidmann60, M C Heintze7, H Heitmann54, P Hello24, G Hemming34, M Hendry36, I S Heng36, J Hennig36, J Henry107, A W Heptonstall1, M Heurs10,19, S Hild36, D Hoak34, D Hofman65, K Holt7, D E Holz77, P Hopkins94, J Hough36, E A Houston36, E J Howell52, Y M Hu10, E A Huerta108, D Huet24, B Hughey103, S Husa86, S H Huttner36, T Huynh-Dinh7, N Indik10, D R Ingram37, R Inta72, H N Isa36, J-M Isac60, M Isi1, T Isogai12, B R Iyer17, K Izumi37, T Jacqmin60, K Jani44, P Jaranowski109, S Jawahar110, F Jiménez-Forteza86, W W Johnson2, D I Jones111, R Jones36, R J G Jonker11, L Ju52, J Junker10, C V Kalaghatgi94, V Kalogera85, S Kandhasamy73, G Kang79, J B Kanner1, S Karki59, K S Karvinen10, M Kasprzack2, E Katsavounidis12, W Katzman7, S Kaufer19, T Kaur52, K Kawabe37, F Kéfélian54, D Keitel86, D B Kelley35, R Kennedy90, J S Key112, F Y Khalili49, I Khan14, S Khan94, Z Khan89, E A Khazanov113, N Kijbunchoo37, Chunglee Kim114, J C Kim115, Whansun Kim116, W Kim70, Y-M Kim114,117, S J Kimbrell44, E J King70, P J King37, R Kirchhoff10, J S Kissel37, B Klein85, L Kleybolte27, S Klimenko6, P Koch10, S M Koehlenbeck10, S Koley11, V Kondrashov1, A Kontos12, M Korobko27, W Z Korth1, I Kowalska62, D B Kozak1, C Krämer10, V Kringel10, B Krishnan10, A Królak118,119, G Kuehn10, P Kumar97, R Kumar89, L Kuo75, A Kutynia118, B D Lackey29,35, M Landry37, R N Lang18, J Lange107, B Lantz40, R K Lanza12, A Lartaux-Vollard24, P D Lasky120, M Laxen7, A Lazzarini1, C Lazzaro42, P Leaci28,81, S Leavey36, E O Lebigot30, C H Lee117, H K Lee121, H M Lee114, K Lee36, J Lehmann10, A Lenon31, M Leonardi92,93, J R Leong10, N Leroy24, N Letendre8, Y Levin120, T G F Li122, A Libson12, T B Littenberg123, J Liu52, N A Lockerbie110, A L Lombardi44, L T London94, J E Lord35, M Lorenzini14,15, V Loriette124, M Lormand7, G Losurdo21, J D Lough10,19, G Lovelace23, H Lück10,19, A P Lundgren10, R Lynch12, Y Ma51, S Macfoy50, B Machenschalk10, M MacInnis12, D M Macleod2, F Magaña-Sandoval35, E Majorana28, I Maksimovic124, V Malvezzi15,26, N Man54, V Mandic125, V Mangano36, G L Mansell22, M Manske18, M Mantovani34, F Marchesoni33,126, F Marion8, S Márka39, Z Márka39, A S Markosyan40, E Maros1, F Martelli57,58, L Martellini54, I W Martin36, D V Martynov12, K Mason12, A Masserot8, T J Massinger1, M Masso-Reid36, S Mastrogiovanni28,81, F Matichard1,12, L Matone39, N Mavalvala12, N Mazumder56, R McCarthy37, D E McClelland22, S McCormick7, C McGrath18, S C McGuire127, G McIntyre1, J McIver1, D J McManus22, T McRae22, S T McWilliams31, D Meacher54,74, G D Meadors10,29, J Meidam11, A Melatos128, G Mendell37, D Mendoza-Gandara10, R A Mercer18, E L Merilh37, M Merzougui54, S Meshkov1, C Messenger36, C Messick74, R Metzdorff60, P M Meyers125, F Mezzani28,81, H Miao45, C Michel65, H Middleton45, E E Mikhailov129, L Milano5,67, A L Miller6,28,81, A Miller85, B B Miller85, J Miller12, M Millhouse84, Y Minenkov15, J Ming29, S Mirshekari130, C Mishra17, S Mitra16, V P Mitrofanov49, G Mitselmakher6, R Mittleman12, A Moggi21, M Mohan34, S R P Mohapatra12, M Montani57,58, B C Moore95, C J Moore80, D Moraru37, G Moreno37, S R Morriss87, B Mours8, C M Mow-Lowry45, G Mueller6, A W Muir94, Arunava Mukherjee17, D Mukherjee18, S Mukherjee87, N Mukund16, A Mullavey7, J Munch70, E A M Muniz23, P G Murray36, A Mytidis6, K Napier44, I Nardecchia15,26, L Naticchioni28,81, G Nelemans11,53, T J N Nelson7, M Neri46,47, M Nery10, A Neunzert106, J M Newport3, G Newton36, T T Nguyen22, A B Nielsen10, S Nissanke11,53, A Nitz10, A Noack10, F Nocera34, D Nolting7, M E N Normandin87, L K Nuttall35, J Oberling37, E Ochsner18, E Oelker12, G H Ogin131, J J Oh116, S H Oh116, F Ohme10,94, M Oliver86, P Oppermann10, Richard J Oram7, B O'Reilly7, R O'Shaughnessy107, D J Ottaway70, H Overmier7, B J Owen72, A E Pace74, J Page123, A Pai101, S A Pai48, J R Palamos59, O Palashov113, C Palomba28, A Pal-Singh27, H Pan75, C Pankow85, F Pannarale94, B C Pant48, F Paoletti21,34, A Paoli34, M A Papa10,18,29, H R Paris40, W Parker7, D Pascucci36, A Pasqualetti34, R Passaquieti20,21, D Passuello21, B Patricelli20,21, B L Pearlstone36, M Pedraza1, R Pedurand65,132, L Pekowsky35, A Pele7, S Penn133, C J Perez37, A Perreca1, L M Perri85, H P Pfeiffer97, M Phelps36, O J Piccinni28,81, M Pichot54, F Piergiovanni57,58, V Pierro9, G Pillant34, L Pinard65, I M Pinto9, M Pitkin36, M Poe18, R Poggiani20,21, P Popolizio34, A Post10, J Powell36, J Prasad16, J W W Pratt103, V Predoi94, T Prestegard18,125, M Prijatelj10,34, M Principe9, S Privitera29, G A Prodi92,93, L G Prokhorov49, O Puncken10, M Punturo33, P Puppo28, M Pürrer29, H Qi18, J Qin52, S Qiu120, V Quetschke87, E A Quintero1, R Quitzow-James59, F J Raab37, D S Rabeling22, H Radkins37, P Raffai98, S Raja48, C Rajan48, M Rakhmanov87, P Rapagnani28,81, V Raymond29, M Razzano20,21, V Re26, J Read23, T Regimbau54, L Rei47, S Reid50, D H Reitze1,6, H Rew129, S D Reyes35, E Rhoades103, F Ricci28,81, K Riles106, M Rizzo107, N A Robertson1,36, R Robie36, F Robinet24, A Rocchi15, L Rolland8, J G Rollins1, V J Roma59, J D Romano87, R Romano4,5, J H Romie7, D Rosińska43,134, S Rowan36, A Rüdiger10, P Ruggi34, K Ryan37, S Sachdev1, T Sadecki37, L Sadeghian18, M Sakellariadou135, L Salconi34, M Saleem101, F Salemi10, A Samajdar136, L Sammut120, L M Sampson85, E J Sanchez1, V Sandberg37, J R Sanders35, B Sassolas65, B S Sathyaprakash74,94, P R Saulson35, O Sauter106, R L Savage37, A Sawadsky19, P Schale59, J Scheuer85, E Schmidt103, J Schmidt10, P Schmidt1,51, R Schnabel27, R M S Schofield59, A Schönbeck27, E Schreiber10, D Schuette10,19, B F Schutz29,94, S G Schwalbe103, J Scott36, S M Scott22, D Sellers7, A S Sengupta137, D Sentenac34, V Sequino15,26, A Sergeev113, Y Setyawati11,53, D A Shaddock22, T J Shaffer37, M S Shahriar85, B Shapiro40, P Shawhan64, A Sheperd18, D H Shoemaker12, D M Shoemaker44, K Siellez44, X Siemens18, M Sieniawska43, D Sigg37, A D Silva13, A Singer1, L P Singer68, A Singh10,19,29, R Singh2, A Singhal14, A M Sintes86, B J J Slagmolen22, B Smith7, J R Smith23, R J E Smith1, E J Son116, B Sorazu36, F Sorrentino47, T Souradeep16, A P Spencer36, A K Srivastava89, A Staley39, M Steinke10, J Steinlechner36, S Steinlechner27,36, D Steinmeyer10,19, B C Stephens18, S P Stevenson45, R Stone87, K A Strain36, N Straniero65, G Stratta57,58, S E Strigin49, R Sturani130, A L Stuver7, T Z Summerscales138, L Sun128, S Sunil89, P J Sutton94, B L Swinkels34, M J Szczepańczyk103, M Tacca30, D Talukder59, D B Tanner6, M Tápai102, A Taracchini29, R Taylor1, T Theeg10, E G Thomas45, M Thomas7, P Thomas37, K A Thorne7, E Thrane120, T Tippens44, S Tiwari14,93, V Tiwari94, K V Tokmakov110, K Toland36, C Tomlinson90, M Tonelli20,21, Z Tornasi36, C I Torrie1, D Töyrä45, F Travasso32,33, G Traylor7, D Trifirò73, J Trinastic6, M C Tringali92,93, L Trozzo21,139, M Tse12, R Tso1, M Turconi54, D Tuyenbayev87, D Ugolini140, C S Unnikrishnan104, A L Urban1, S A Usman94, H Vahlbruch19, G Vajente1, G Valdes87, N van Bakel11, M van Beuzekom11, J F J van den Brand11,63, C Van Den Broeck11, D C Vander-Hyde35, L van der Schaaf11, J V van Heijningen11, A A van Veggel36, M Vardaro41,42, V Varma51, S Vass1, M Vasúth38, A Vecchio45, G Vedovato42, J Veitch45, P J Veitch70, K Venkateswara141, G Venugopalan1, D Verkindt8, F Vetrano57,58, A Viceré57,58, A D Viets18, S Vinciguerra45, D J Vine50, J-Y Vinet54, S Vitale12, T Vo35, H Vocca32,33, C Vorvick37, D V Voss6, W D Vousden45, S P Vyatchanin49, A R Wade1, L E Wade78, M Wade78, M Walker2, L Wallace1, S Walsh10,29, G Wang14,58, H Wang45, M Wang45, Y Wang52, R L Ward22, J Warner37, M Was8, J Watchi82, B Weaver37, L-W Wei54, M Weinert10, A J Weinstein1, R Weiss12, L Wen52, P Weßels10, T Westphal10, K Wette10, J T Whelan107, B F Whiting6, C Whittle120, D Williams36, R D Williams1, A R Williamson94, J L Willis142, B Willke10,19, M H Wimmer10,19, W Winkler10, C C Wipf1, H Wittel10,19, G Woan36, J Woehler10, J Worden37, J L Wright36, D S Wu10, G Wu7, W Yam12, H Yamamoto1, C C Yancey64, M J Yap22, Hang Yu12, Haocun Yu12, M Yvert8, A Zadrożny118, L Zangrando42, M Zanolin103, J-P Zendri42, M Zevin85, L Zhang1, M Zhang129, T Zhang36, Y Zhang107, C Zhao52, M Zhou85, Z Zhou85, S J Zhu10,29, X J Zhu52, M E Zucker1,12, J Zweizig1 (LIGO Scientific Collaboration, Virgo Collaboration), M Boyle143, T Chu97, D Hemberger51, I Hinder29, L E Kidder143, S Ossokine29, M Scheel51, B Szilagyi51, S Teukolsky143 and A Vano Vinuales94 Hide full author list Published 12 April 2017 • © 2017 IOP Publishing Ltd Classical and Quantum Gravity, Volume 34, Number 10 Focus Issue: Gravitational Waves Article PDF Figures References Citations PDF 258 Total downloads Cited by 1 articles Article has an altmetric score of 3 Turn on MathJax Get permission to re-use this article Share this article Article information Abstract Parameter estimates of GW150914 were obtained using Bayesian inference, based on three semi-analytic waveform models for binary black hole coalescences. These waveform models differ from each other in their treatment of black hole spins, and all three models make some simplifying assumptions, notably to neglect sub-dominant waveform harmonic modes and orbital eccentricity. Furthermore, while the models are calibrated to agree with waveforms obtained by full numerical solutions of Einstein's equations, any such calibration is accurate only to some non-zero tolerance and is limited by the accuracy of the underlying phenomenology, availability, quality, and parameter-space coverage of numerical simulations. This paper complements the original analyses of GW150914 with an investigation of the effects of possible systematic errors in the waveform models on estimates of its source parameters. To test for systematic errors we repeat the original Bayesian analysis on mock signals from numerical simulations of a series of binary configurations with parameters similar to those found for GW150914. Overall, we find no evidence for a systematic bias relative to the statistical error of the original parameter recovery of GW150914 due to modeling approximations or modeling inaccuracies. However, parameter biases are found to occur for some configurations disfavored by the data of GW150914: for binaries inclined edge-on to the detector over a small range of choices of polarization angles, and also for eccentricities greater than ~0.05. For signals with higher signal-to-noise ratio than GW150914, or in other regions of the binary parameter space (lower masses, larger mass ratios, or higher spins), we expect that systematic errors in current waveform models may impact gravitational-wave measurements, making more accurate models desirable for future observations

    Search for Post-merger Gravitational Waves from the Remnant of the Binary Neutron Star Merger GW170817

    Get PDF
    The first observation of a binary neutron star coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiralling objects and on the equation of state of nuclear matter. This could be either a black hole or a neutron star (NS), with the latter being either long-lived or too massive for stability implying delayed collapse to a black hole. Here, we present a search for gravitational waves from the remnant of the binary neutron star merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short (1\lesssim1 s) and intermediate-duration (500\lesssim 500 s) signals, which includes gravitational-wave emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root-sum-square of the gravitational-wave strain emitted from 1--4 kHz is hrss50%=2.1×1022h_{\rm rss}^{50\%}=2.1\times 10^{-22} Hz1/2^{-1/2} at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is hrss50%=8.4×1022h_{\rm rss}^{50\%}=8.4\times 10^{-22} Hz1/2^{-1/2} for a millisecond magnetar model, and hrss50%=5.9×1022h_{\rm rss}^{50\%}=5.9\times 10^{-22} Hz1/2^{-1/2} for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors
    corecore