6,558 research outputs found

    Ectodomain shedding of the amyloid precursor protein: Cellular control mechanisms and novel modifiers

    Get PDF
    Proteolytic cleavage in the ectodomain of the amyloid precursor protein (APP) is a key regulatory step in the generation of the Alzheimer's disease amyloid-beta (A beta) pepticle and occurs through two different protease activities termed alpha- and beta-secretase. Both proteases compete for APP cleavage, but have opposite effects on A beta generation. At present, little is known about the cellular pathways that control APP alpha- or beta-secretase cleavage and thus A beta generation. To explore the contributory pathways in more detail we have recently employed an expression cloning screen and identified several activators of APP cleavage by alpha- or beta-secretase. Among them were known activators of APP cleavage, for example protein kinase A, and novel activators, such as endophilin and the APP homolog amyloid precursor-like protein 1 (APLP1). Mechanistic analysis revealed that both endophilin and APLP1 reduce the rate of APP endocytosis and strongly increase APP cleavage by alpha-secretase. This review summarizes the results of the expression cloning screen in the context of recent developments in our understanding of the cellular regulation of APP alpha-secretase cleavage. Moreover, it highlights the particular importance of endocytic APP trafficking as a prime modulator of APP shedding. Copyright (c) 2006 S. Karger AG, Basel

    Site of Prenylation Reaction in Synthesis of Phylloquinone (Vitamin K1) by Spinach Chloroplasts

    Get PDF
    In spinach chloroplasts, 1,4-dihydroxy-2-naphthoate is prenylated by phytyldiphosphate and subsequently methylated by S-adenosylmethionine to form phylloquinol. The site of the prenylation reaction is the chloroplast envelope membrane

    Multi-colour fluorescence imaging of photosynthetic activity and plant stress

    Get PDF
    Imaging the four fluorescence bands of leaves, the red (F690_{690}) and far-red (F740_{740}) chlorophyll (Chl) fluorescence as well as the blue (F440_{440}) and green (F520_{520}) fluorescence of leaves and the corresponding fluorescence ratios is a fast and excellent nondestructive technique to detect the photosynthetic activity and capacity of leaves, of gradients over the leaf area as well as the effect of various strain and stress parameters on plants. This review primarily deals with the first and pioneering multi-colour fluorescence imaging results obtained since the mid-1990s in a cooperation with French colleagues in Strasbourg and in my laboratory in Karlsruhe. Together we introduced not only the joint imaging of the red and far-red Chl fluorescence but also of the blue and green fluorescence of leaves. The two instrumental setups composed for this purpose were (1) the Karlsruhe–Strasbourg UV-Laser Fluorescence Imaging System (Laser-FIS) and (2) the Karlsruhe Flash-Light Fluorescence Imaging System (FL-FIS). Essential results obtained with these instruments are summarized as well as the basic principles and characteristics of multi-colour fluorescence imaging. The great advantage of fluorescence imaging is that the fluorescence yield in the four fluorescence bands is sensed of several thousand up to 200,000 pixels per leaf area in one image. The multi-colour FIS technique allows to sense many physiological parameters and stress effects in plants at an early stage before a damage of leaves is visually detectable. Various examples of plant stress detection by the multi-colour FIS technique are given. Via imaging the Chl fluorescence ratio F690/F740 it is even possible to determine the Chl content of leaves. The FIS technique also allows to follow the successive uptake of diuron and loss of photosynthetic function and to screen the ripening of apples during storage. Particularly meaningful and of high statistical relevance are the fluorescence ratio images red/far-red (F690_{690}/ F740_{740}), blue/red (F440_{440}/F690_{690}), and blue/green (F440_{440}/F520_{520}) as well as images of the fluorescence decrease ratio RFd_{Fd}, which is an indicator of the net CO2_{2} assimilation rates of leaves

    My contact and cooperation with Govindjee over the last five decades: Chlorophyll fluorescence and Rebeiz Foundation

    Get PDF
    Govindjee and Hartmut Lichtenthaler have a very similar curriculum vitae. Both chose photosynthesis as research field and actively applied chlorophyll fluorescence. Their research was overlapping and complementary. On the occasion of Govindjee\u27s 88th anniversary in 2020, Hartmut Lichtenthaler gives a short retrospective on interactions and joint activities with Govindjee over the past five decades

    Contents of photosynthetic pigments and ratios of chlorophyll a/b and chlorophylls to carotenoids (a+b)/(x+c) in C4_{4} plants as compared to C3_{3} plants

    Get PDF
    The content of chlorophylls (Chl) (a+b), total carotenoids (x+c), and the pigment ratios of Chl a/b and Chls to carotenoids (a+b)/(x+c) of green leaves of five C4_{4} plants were determined and compared to those of C3_{3} plants. The C4_{4} plants were: Pacific and Chinese silvergrass (Miscanthus floridulus and Miscanthus sinensis), sugar cane (Saccharum officinarum) as well as feed and sugar maize (Zea mays). The three C3_{3} plants were beech, ginkgo, and oak. C4_{4} plants possess higher values for the ratio Chl a/b (3.4-4.5) as compared to the C3_{3} plants (2.6-3.3). Sugar maize had the highest values for Chl a/b (4.04-4.70) and exceptionally high contents of total carotenoids and consequently lower values for the ratio of (a+b)/(x+c) (mean: 3.75 ± 0.6). During autumnal senescence also C4_{4} plants showed a faster decline of Chl b as compared to Chl a yielding high values for Chl a/b of 6 to 8. Chlorophylls declined faster than carotenoids yielding low (a+b)/(x+c) values below 1.0

    The Membrane-Bound Aspartyl Protease BACE1: Molecular and Functional Properties in Alzheimer’s Disease and Beyond

    Get PDF
    The β-site APP cleaving enzyme 1 (BACE1) is a transmembrane aspartyl protease involved in Alzheimer’s disease (AD) pathogenesis and in myelination. BACE1 initiates the generation of the pathogenic amyloid β-peptide, which makes BACE1 a major drug target for AD. BACE1 also cleaves and activates neuregulin 1, thereby contributing to postnatal myelination, in particular in the peripheral nervous system. Additional proteins are also cleaved by BACE1, but less is known about the physiological consequences of their cleavage. Recently, new phenotypes were described in BACE1-deficient mice. Although it remains unclear through which BACE1 substrates they are mediated, the phenotypes suggest a versatile role of this protease for diverse physiological processes. This review summarizes the enzymatic and cellular properties of BACE1 as well as its regulation by lipids, by transcriptional, and by translational mechanisms. The main focus will be on the recent progress in understanding BACE1 function and its implication for potential mechanism-based side effects upon therapeutic inhibition

    Nonsteroidal Anti-Inflammatory Drugs and Ectodomain Shedding of the Amyloid Precursor Protein

    Get PDF
    Background: Epidemiological studies have suggested that long-term use of nonsteroidal anti-inflammatory drugs (NSAIDs) is associated with a reduced incidence of Alzheimer's disease (AD). Several mechanisms have been proposed to explain these findings including increased shedding of the soluble ectodomain of the amyloid precursor protein (sAPP), which functions as a neurotrophic and neuroprotective factor in vitro and in vivo. Objective: To clarify whether NSAIDs consistently stimulate sAPP secretion. Methods: 293-EBNA cells with stable overexpression of an APP-alkaline phosphatase fusion protein (APP-AP), SH-SY5Y and PC12 cells or primary telencephalic chicken neurons were treated with ibuprofen or indomethacin. APP shedding was then determined by measuring AP activity in conditioned media, Western blot analysis with antibodies against total sAPP or specific for sAPP-alpha, or in a pulse-chase paradigm. Results: AP activity in conditioned media was not increased after NSAID treatment of 293-EBNA cells whereas it was elevated by phorbol ester. Surprisingly, ibuprofen or indomethacin treatment of SH-SY5Y and PC12 cells expressing endogenous APP did not cause changes in sAPP or sAPP-alpha secretion or downregulation of cellular APP. These findings were further corroborated in primary chicken neuronal cultures. Conclusions: Using various experimental settings, we were unable to confirm sAPP or sAPP-alpha stimulation with the NSAIDs ibuprofen and indomethacin in transfected and nontransfected cells of neuronal and nonneuronal origin. Importantly, these findings seem to rule out chronic sAPP stimulation as an alternative mechanism of NSAID action in AD. Copyright (C) 2008 S. Karger AG, Base

    Strong increase of photosynthetic pigments and leaf size in a pruned Ginkgo biloba tree

    Get PDF
    A 50-year-old solitary, sun-exposed ginkgo tree had strongly been pruned in the fall of 2021. Very few buds for the formation of new leaves, twigs, and branches were left over. In spring 2022, these few remaining buds responded with the formation of a different leaf type. These leaves were 2.7 times larger and also thicker than in the years before. In addition, the mean content of total chlorophylls [Chl (a+b)] per leaf area unit of dark-green leaves was 1.45, those of green leaves two times higher as compared to the years leaves as compared to 435 to 770 mg m-2 in leaves of other trees. The higher values for Chl (a+b) and total carotenoid content showed up also on a fresh and dry mass basis. Thus, with the formation of a new, larger leaf type by changes in morphology (leaf size and thickness) and the increase of photosynthetic pigments, the pruned ginkgo tree was able to compensate for the much lower number of leaves and photosynthetic units

    Site of biosynthesis of a-tocopherol in spinach chloroplasts

    Get PDF
    The chloroplast envelope is a continuous boundary of two osmiophilic membranes and has an important role in galactolipid synthesis [ 11. It was interesting to determine whether the envelope is the site of synthesi
    corecore