146 research outputs found

    Tenni

    Get PDF

    Blockchain and Cryptocurrency in Human Computer Interaction:A Systematic Literature Review and Research Agenda

    Get PDF
    We present a systematic literature review of cryptocurrency and blockchain research in Human-Computer Interaction (HCI) published between 2014 and 2021. We aim to provide an overview of the field, consolidate existing knowledge, and chart paths for future research. Our analysis of 99 articles identifies six major themes: (1) the role of trust, (2) understanding motivation, risk, and perception of cryptocurrencies, (3) cryptocurrency wallets, (4) engaging users with blockchain, (5) using blockchain for application-specific use cases, and (6) support tools for blockchain. We discuss the focus of the existing research body and juxtapose it to the changing landscape of emerging blockchain technologies to highlight future research avenues for HCI and interaction design. With this review, we identify key aspects where interaction design is critical for the adoption of blockchain systems. Doing so, we provide a starting point for new scholars and designers and help them position future contributions

    Perceiving layered information on 3D displays using binocular disparity

    Full text link
    stuttgart.de 3D displays are hitting the mass market. They are integrated in consumer TVs, notebooks, and mobile phones and are mainly used for virtual reality as well as video content. We see large potential in using depth also for structuring information. Our specific use case is 3D displays integrated in cars. The capabilities of such dis-plays could be used to present relevant information to the driver in a fast and easy-to-understand way, e.g., by functionality-based clus-tering. However, excessive parallaxes can cause discomfort and in turn negatively influence the primary driving task. This requires a reasonable choice of parallax boundaries. The contribution of this paper is twofold. First, we identify the comfort zone when perceiv-ing 3D content. Second, we determine a minimum depth distance between objects that still enables users to quickly and accurately separate the two depth planes. The results yield that in terms of task completion time the optimum distance from screen level is up to 35.9 arc-min angular disparity behind the screen plane. A dis-tance of at least 2.7 arc-min difference in angular disparity between the objects significantly decreases time for layer separation. Based on the results we derive design implications

    Enabling micro-entertainment in vehicles based on context information

    Full text link
    People spend a significant amount of time in their cars (US: 86 minutes/day, Europe: 43 minutes/day) while commuting, shop-ping, or traveling. Hence, the variety of entertainment in the car increases, and many vehicles are already equipped with displays, allowing for watching news, videos, accessing the Internet, or playing games. At the same time, the urbanization caused a mas-sive increase of traffic volume, which led to people spending an ever-increasing amount of their time in front of red traffic lights. An observation of the prevailing forms of entertainment in the car reveals that content such as text, videos, or games are often a mere adaptation of content produced for television, public displays, PCs, or mobile phones and do not adapt to the situation in the car. In this paper we report on a web survey assessing which forms of entertainment and which types of content are considered to be useful for in-car entertainment by drivers. We then introduce an algorithm, which is capable of learning standing times in front of traffic lights based on GPS information only. This, on one hand, allows for providing content of appropriate length, on the other hand, for directing the attention of the driver back to-wards the street at the right time. Finally, we present a prototype implemen-tation and a qualitative evaluation

    Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration

    Full text link
    Extensive experimental data from high-energy nucleus-nucleus collisions were recorded using the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC). The comprehensive set of measurements from the first three years of RHIC operation includes charged particle multiplicities, transverse energy, yield ratios and spectra of identified hadrons in a wide range of transverse momenta (p_T), elliptic flow, two-particle correlations, non-statistical fluctuations, and suppression of particle production at high p_T. The results are examined with an emphasis on implications for the formation of a new state of dense matter. We find that the state of matter created at RHIC cannot be described in terms of ordinary color neutral hadrons.Comment: 510 authors, 127 pages text, 56 figures, 1 tables, LaTeX. Submitted to Nuclear Physics A as a regular article; v3 has minor changes in response to referee comments. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Measurement of charm production at central rapidity in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV

    Get PDF
    The pTp_{\rm T}-differential production cross sections of the prompt (B feed-down subtracted) charmed mesons D0^0, D+^+, and D+^{*+} in the rapidity range y<0.5|y|<0.5, and for transverse momentum 1<pT<121< p_{\rm T} <12 GeV/cc, were measured in proton-proton collisions at s=2.76\sqrt{s} = 2.76 TeV with the ALICE detector at the Large Hadron Collider. The analysis exploited the hadronic decays D0^0 \rightarrow Kπ\pi, D+^+ \rightarrow Kππ\pi\pi, D+^{*+} \rightarrow D0π^0\pi, and their charge conjugates, and was performed on a Lint=1.1L_{\rm int} = 1.1 nb1^{-1} event sample collected in 2011 with a minimum-bias trigger. The total charm production cross section at s=2.76\sqrt{s} = 2.76 TeV and at 7 TeV was evaluated by extrapolating to the full phase space the pTp_{\rm T}-differential production cross sections at s=2.76\sqrt{s} = 2.76 TeV and our previous measurements at s=7\sqrt{s} = 7 TeV. The results were compared to existing measurements and to perturbative-QCD calculations. The fraction of cdbar D mesons produced in a vector state was also determined.Comment: 20 pages, 5 captioned figures, 4 tables, authors from page 15, published version, figures at http://aliceinfo.cern.ch/ArtSubmission/node/307

    Siderophore-based detection of Fe(iii) and microbial pathogens

    Get PDF
    Siderophores are low-molecular-weight iron chelators that are produced and exported by bacteria, fungi and plants during periods of nutrient deprivation. The structures, biosynthetic logic, and coordination chemistry of these molecules have fascinated chemists for decades. Studies of such fundamental phenomena guide the use of siderophores and siderophore conjugates in a variety of medicinal applications that include iron-chelation therapies and drug delivery. Sensing applications constitute another important facet of siderophore-based technologies. The high affinities of siderophores for both ferric ions and siderophore receptors, proteins expressed on the cell surface that are required for ferric siderophore import, indicate that these small molecules may be employed for the selective capture of metal ions, proteins, and live bacteria. This minireview summaries progress in methods that utilize native bacterial and fungal siderophore scaffolds for the detection of Fe(III) or microbial pathogens.Massachusetts Institute of Technology. Dept. of Chemistr

    Synthesis, Structure and Reactivity of Sulfur-Rich Cyclopentadienyl-Transition Metal Complexes: Sulfur Chemistry from an Organometallic Point of View

    Get PDF
    Metal-sulfur centers play an important role in the activity of metalloproteins in enzymatic catalysis and the activity of metal sulfides as heterogeneous catalysts. The systematic search for M[BOND]S model compounds led to the discovery of an interesting and novel structural chemistry, which stems from the numerous coordination possibilities of sulfur ligands. The intention of this review article is to present and outline new approaches to sulfur chemistry from the organometallic point of view. Reactive cyclopentadienyl-transition metal fragments incorporate elemental sulfur to give polynuclear sulfur-rich complexes, which can contain either mono-, di- or polysulfido ligands or several such ligands in combined form. The versatile structural chemistry of the complexes formed and their reactivity towards organic, inorganic and organometallic compounds are discussed, and examples of some simple and rational procedures for their synthesis starting from cyclopentadienylcarbonyl- and cyclopentadienylhydrido-complexes are outlined. Their reactivity is manifested in numerous metal- and ligandcentered reactions. Finally the, albeit far less extensive, complex chemistry of the other chalcogens (O, Se, Te) is also considered for comparison, thus providing a more detailed survey of particular aspects of this area of chemistry
    corecore