1,513 research outputs found

    AI Researchers, Video Games Are Your Friends!

    Full text link
    If you are an artificial intelligence researcher, you should look to video games as ideal testbeds for the work you do. If you are a video game developer, you should look to AI for the technology that makes completely new types of games possible. This chapter lays out the case for both of these propositions. It asks the question "what can video games do for AI", and discusses how in particular general video game playing is the ideal testbed for artificial general intelligence research. It then asks the question "what can AI do for video games", and lays out a vision for what video games might look like if we had significantly more advanced AI at our disposal. The chapter is based on my keynote at IJCCI 2015, and is written in an attempt to be accessible to a broad audience.Comment: in Studies in Computational Intelligence Studies in Computational Intelligence, Volume 669 2017. Springe

    Evaluation of machine-learning methods for ligand-based virtual screening

    Get PDF
    Machine-learning methods can be used for virtual screening by analysing the structural characteristics of molecules of known (in)activity, and we here discuss the use of kernel discrimination and naive Bayesian classifier (NBC) methods for this purpose. We report a kernel method that allows the processing of molecules represented by binary, integer and real-valued descriptors, and show that it is little different in screening performance from a previously described kernel that had been developed specifically for the analysis of binary fingerprint representations of molecular structure. We then evaluate the performance of an NBC when the training-set contains only a very few active molecules. In such cases, a simpler approach based on group fusion would appear to provide superior screening performance, especially when structurally heterogeneous datasets are to be processed

    Different types of physical activity are positively associated with indicators of mental health and psychological wellbeing in rheumatoid arthritis during COVID-19

    Get PDF
    © 2020 The Authors. Published by Springer Nature. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1007/s00296-020-04751-wNationwide lockdowns during SARS-CoV-2 (COVID-19) can compromise mental health and psychological wellbeing and limit opportunities for physical activity (PA), particularly in clinical populations, such as people with rheumatoid arthritis (RA), who are considered at risk for COVID-19 complications. This study aimed to investigate associations between PA and sedentary time (ST) with indicators of mental health and wellbeing in RA during COVID-19 lockdown, and examine the moderation effects of self-isolating. 345 RA patients completed an online questionnaire measuring PA (NIH-AARP Diet and Health Study Questionnaire), ST (International Physical Activity Questionnaire-Short Form), pain (McGill Pain Questionnaire and Visual Analogue Scale), fatigue (Multidimensional Fatigue Inventory), depressive and anxious symptoms (Hospital Anxiety and Depression Scale), and vitality (Subjective Vitality Scale) during the United Kingdom COVID-19 lockdown. Associations between PA and ST with mental health and wellbeing were examined using hierarchical multiple linear regressions. Light PA (LPA) was significantly negatively associated with mental fatigue (β = − .11), depressive symptoms (β = − .14), and positively with vitality (β = .13). Walking was negatively related to physical fatigue (β = − .11) and depressive symptoms (β = − .12) and positively with vitality (β = .15). Exercise was negatively associated with physical (β = − .19) and general (β = − .12) fatigue and depressive symptoms (β = − .09). ST was positively associated with physical fatigue (β = .19). Moderation analyses showed that LPA was related to lower mental fatigue and better vitality in people not self-isolating, and walking with lower physical fatigue in people self-isolating. These findings show the importance of encouraging PA for people with RA during a lockdown period for mental health and wellbeing.This work was completed as part of a PhD studentship supported by the Medical Research Council (MRC)-Versus Arthritis Centre for Musculoskeletal Ageing Research (CMAR) (grant number: MR/K00414X/1)

    Optimally splitting cases for training and testing high dimensional classifiers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We consider the problem of designing a study to develop a predictive classifier from high dimensional data. A common study design is to split the sample into a training set and an independent test set, where the former is used to develop the classifier and the latter to evaluate its performance. In this paper we address the question of what proportion of the samples should be devoted to the training set. How does this proportion impact the mean squared error (MSE) of the prediction accuracy estimate?</p> <p>Results</p> <p>We develop a non-parametric algorithm for determining an optimal splitting proportion that can be applied with a specific dataset and classifier algorithm. We also perform a broad simulation study for the purpose of better understanding the factors that determine the best split proportions and to evaluate commonly used splitting strategies (1/2 training or 2/3 training) under a wide variety of conditions. These methods are based on a decomposition of the MSE into three intuitive component parts.</p> <p>Conclusions</p> <p>By applying these approaches to a number of synthetic and real microarray datasets we show that for linear classifiers the optimal proportion depends on the overall number of samples available and the degree of differential expression between the classes. The optimal proportion was found to depend on the full dataset size (n) and classification accuracy - with higher accuracy and smaller <it>n </it>resulting in more assigned to the training set. The commonly used strategy of allocating 2/3rd of cases for training was close to optimal for reasonable sized datasets (<it>n </it>≥ 100) with strong signals (i.e. 85% or greater full dataset accuracy). In general, we recommend use of our nonparametric resampling approach for determing the optimal split. This approach can be applied to any dataset, using any predictor development method, to determine the best split.</p

    The Influence of Recovery and Training Phases on Body Composition, Peripheral Vascular Function and Immune System of Professional Soccer Players

    Get PDF
    Professional soccer players have a lengthy playing season, throughout which high levels of physical stress are maintained. The following recuperation period, before starting the next pre-season training phase, is generally considered short but sufficient to allow a decrease in these stress levels and therefore a reduction in the propensity for injury or musculoskeletal tissue damage. We hypothesised that these physical extremes influence the body composition, blood flow, and endothelial/immune function, but that the recuperation may be insufficient to allow a reduction of tissue stress damage. Ten professional football players were examined at the end of the playing season, at the end of the season intermission, and after the next pre-season endurance training. Peripheral blood flow and body composition were assessed using venous occlusion plethysmography and DEXA scanning respectively. In addition, selected inflammatory and immune parameters were analysed from blood samples. Following the recuperation period a significant decrease of lean body mass from 74.4±4.2 kg to 72.2±3.9 kg was observed, but an increase of fat mass from 10.3±5.6 kg to 11.1±5.4 kg, almost completely reversed the changes seen in the pre-season training phase. Remarkably, both resting and post-ischemic blood flow (7.3±3.4 and 26.0±6.3 ml/100 ml/min) respectively, were strongly reduced during the playing and training stress phases, but both parameters increased to normal levels (9.0±2.7 and 33.9±7.6 ml/100 ml/min) during the season intermission. Recovery was also characterized by rising levels of serum creatinine, granulocytes count, total IL-8, serum nitrate, ferritin, and bilirubin. These data suggest a compensated hypo-perfusion of muscle during the playing season, followed by an intramuscular ischemia/reperfusion syndrome during the recovery phase that is associated with muscle protein turnover and inflammatory endothelial reaction, as demonstrated by iNOS and HO-1 activation, as well as IL-8 release. The data provided from this study suggest that the immune system is not able to function fully during periods of high physical stress. The implications of this study are that recuperation should be carefully monitored in athletes who undergo intensive training over extended periods, but that these parameters may also prove useful for determining an individual's risk of tissue stress and possibly their susceptibility to progressive tissue damage or injury

    Two-stage directed self-assembly of a cyclic [3]catenane.

    Get PDF
    Interlocked molecules possess properties and functions that depend upon their intricate connectivity. In addition to the topologically trivial rotaxanes, whose structures may be captured by a planar graph, the topologically non-trivial knots and catenanes represent some of chemistry's most challenging synthetic targets because of the three-dimensional assembly necessary for their construction. Here we report the synthesis of a cyclic [3]catenane, which consists of three mutually interpenetrating rings, via an unusual synthetic route. Five distinct building blocks self-assemble into a heteroleptic triangular framework composed of two joined Fe(II)3L3 circular helicates. Subcomponent exchange then enables specific points in the framework to be linked together to generate the cyclic [3]catenane product. Our method represents an advance both in the intricacy of the metal-templated self-assembly procedure and in the use of selective imine exchange to generate a topologically complex product.This work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) and a Marie Curie fellowship for J.J.H. (ITN-2010–264645). The authors thank the Diamond Light Source (UK) for synchrotron beamtime on I19 (MT7984 and MT8464).This is the author accepted manuscript. The final version is available from NPG via http://dx.doi.org/10.1038/nchem.220

    Clinical and laboratory predictors of death in African children with features of severe malaria: a systematic review and meta-analysis.

    Get PDF
    The criteria for defining severe malaria have evolved over the last 20 years. We aimed to assess the strength of association of death with features currently characterizing severe malaria through a systematic review and meta-analysis. Electronic databases (Medline, Embase, Cochrane Database of Systematic Reviews, Thomson Reuters Web of Knowledge) were searched to identify publications including African children with severe malaria. PRISMA guidelines were followed. Selection was based on design (epidemiological, clinical and treatment studies), setting (Africa), participants (children &lt; 15 years old with severe malaria), outcome (survival/death rate), and prognostic indicators (clinical and laboratory features). Quality assessment was performed following the criteria of the 2011 Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2). Odds ratios (ORs) were calculated for each study and prognostic indicator, and, when a test was assessed in at least two studies, pooled estimates of ORs were computed using fixed- or random-effects meta-analysis. A total of 601 articles were identified and screened and 30 publications were retained. Features with the highest pooled ORs were renal failure (5.96, 95% CI 2.93-12.11), coma score (4.83, 95% CI 3.11-7.5), hypoglycemia (4.59, 95% CI 2.68-7.89), shock (4.31, 95% CI 2.15-8.64), and deep breathing (3.8, 95% CI 3.29-4.39). Only half of the criteria had an OR &gt; 2. Features with the lowest pooled ORs were impaired consciousness (0.58, 95% CI 0.25-1.37), severe anemia (0.76, 95% CI 0.5- 1.13), and prostration (1.12, 95% CI 0.45-2.82). The findings of this meta-analysis show that the strength of association between the criteria defining severe malaria and death is quite variable for each clinical and/or laboratory feature (OR ranging from 0.58 to 5.96). This ranking allowed the identification of features weakly associated with death, such as impaired consciousness and prostration, which could assist to improve case definition, and thus optimize antimalarial treatment

    A random forest approach to the detection of epistatic interactions in case-control studies

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The key roles of epistatic interactions between multiple genetic variants in the pathogenesis of complex diseases notwithstanding, the detection of such interactions remains a great challenge in genome-wide association studies. Although some existing multi-locus approaches have shown their successes in small-scale case-control data, the "combination explosion" course prohibits their applications to genome-wide analysis. It is therefore indispensable to develop new methods that are able to reduce the search space for epistatic interactions from an astronomic number of all possible combinations of genetic variants to a manageable set of candidates.</p> <p>Results</p> <p>We studied case-control data from the viewpoint of binary classification. More precisely, we treated single nucleotide polymorphism (SNP) markers as categorical features and adopted the random forest to discriminate cases against controls. On the basis of the gini importance given by the random forest, we designed a sliding window sequential forward feature selection (SWSFS) algorithm to select a small set of candidate SNPs that could minimize the classification error and then statistically tested up to three-way interactions of the candidates. We compared this approach with three existing methods on three simulated disease models and showed that our approach is comparable to, sometimes more powerful than, the other methods. We applied our approach to a genome-wide case-control dataset for Age-related Macular Degeneration (AMD) and successfully identified two SNPs that were reported to be associated with this disease.</p> <p>Conclusion</p> <p>Besides existing pure statistical approaches, we demonstrated the feasibility of incorporating machine learning methods into genome-wide case-control studies. The gini importance offers yet another measure for the associations between SNPs and complex diseases, thereby complementing existing statistical measures to facilitate the identification of epistatic interactions and the understanding of epistasis in the pathogenesis of complex diseases.</p
    corecore