35 research outputs found
Positivity of the English language
Over the last million years, human language has emerged and evolved as a
fundamental instrument of social communication and semiotic representation.
People use language in part to convey emotional information, leading to the
central and contingent questions: (1) What is the emotional spectrum of natural
language? and (2) Are natural languages neutrally, positively, or negatively
biased? Here, we report that the human-perceived positivity of over 10,000 of
the most frequently used English words exhibits a clear positive bias. More
deeply, we characterize and quantify distributions of word positivity for four
large and distinct corpora, demonstrating that their form is broadly invariant
with respect to frequency of word use.Comment: Manuscript: 9 pages, 3 tables, 5 figures; Supplementary Information:
12 pages, 3 tables, 8 figure
Positive words carry less information than negative words
We show that the frequency of word use is not only determined by the word
length \cite{Zipf1935} and the average information content
\cite{Piantadosi2011}, but also by its emotional content. We have analyzed
three established lexica of affective word usage in English, German, and
Spanish, to verify that these lexica have a neutral, unbiased, emotional
content. Taking into account the frequency of word usage, we find that words
with a positive emotional content are more frequently used. This lends support
to Pollyanna hypothesis \cite{Boucher1969} that there should be a positive bias
in human expression. We also find that negative words contain more information
than positive words, as the informativeness of a word increases uniformly with
its valence decrease. Our findings support earlier conjectures about (i) the
relation between word frequency and information content, and (ii) the impact of
positive emotions on communication and social links.Comment: 16 pages, 3 figures, 3 table
The price of tumor control: an analysis of rare side effects of anti-CTLA-4 therapy in metastatic melanoma from the ipilimumab network
Background: Ipilimumab, a cytotoxic T-lymphocyte antigen-4 (CTLA-4) blocking antibody, has been approved for the treatment of metastatic melanoma and induces adverse events (AE) in up to 64% of patients. Treatment algorithms for the management of common ipilimumab-induced AEs have lead to a reduction of morbidity, e.g. due to bowel perforations. However, the spectrum of less common AEs is expanding as ipilimumab is increasingly applied. Stringent recognition and management of AEs will reduce drug-induced morbidity and costs, and thus, positively impact the cost-benefit ratio of the drug. To facilitate timely identification and adequate management data on rare AEs were analyzed at 19 skin cancer centers.
Methods and Findings: Patient files (n = 752) were screened for rare ipilimumab-associated AEs. A total of 120 AEs, some of which were life-threatening or even fatal, were reported and summarized by organ system describing the most instructive cases in detail. Previously unreported AEs like drug rash with eosinophilia and systemic symptoms (DRESS), granulomatous inflammation of the central nervous system, and aseptic meningitis, were documented. Obstacles included patientś delay in reporting symptoms and the differentiation of steroid-induced from ipilimumab-induced AEs under steroid treatment. Importantly, response rate was high in this patient population with tumor regression in 30.9% and a tumor control rate of 61.8% in stage IV melanoma patients despite the fact that some patients received only two of four recommended ipilimumab infusions. This suggests that ipilimumab-induced antitumor responses can have an early onset and that severe autoimmune reactions may reflect overtreatment.
Conclusion: The wide spectrum of ipilimumab-induced AEs demands doctor and patient awareness to reduce morbidity and treatment costs and true ipilimumab success is dictated by both objective tumor responses and controlling severe side effects
Creation and annihilation of topological meron pairs in in-plane magnetized films
Merons which are topologically equivalent to one-half of skyrmions can exist only in pairs or groups in two-dimensional (2D) ferromagnetic (FM) systems. The recent discovery of meron lattice in chiral magnet Co8Zn9Mn3 raises the immediate challenging question that whether a single meron pair, which is the most fundamental topological structure in any 2D meron systems, can be created and stabilized in a continuous FM film? Utilizing winding number conservation, we develop a new method to create and stabilize a single pair of merons in a continuous Py film by local vortex imprinting from a Co disk. By observing the created meron pair directly within a magnetic field, we determine its topological structure unambiguously and explore the topological effect in its creation and annihilation processes. Our work opens a pathway towards developing and controlling topological structures in general magnetic systems without the restriction of perpendicular anisotropy and Dzyaloshinskii-Moriya interaction
Effect of synbiotic supplementation in children and adolescents with cystic fibrosis: a randomized controlled clinical trial
BACKGROUND/OBJECTIVES:Cystic fibrosis (CF) is characterized by excessive activation of immune processes. The aim of this study was to evaluate the effect of synbiotic supplementation on the inflammatory response in children/adolescents with CF.
SUBJECTS/METHODS:A randomized, placebo-controlled, double-blind, clinical-trial was conducted with control group (CG, n = 17), placebo-CF-group (PCFG, n = 19), synbiotic CF-group (SCFG, n = 22), PCFG negative (n = 8) and positive (n = 11) bacteriology, and SCFG negative (n = 12) and positive (n = 10) bacteriology. Markers of lung function (FEV1), nutritional status [body mass index-for age (BMI/A), height-for-age (H/A), weight-for-age (W/A), upper-arm fat area (UFA), upper-arm muscle area (UMA), body fat (%BF)], and inflammation [interleukin (IL)-12, tumor necrosis factor-alpha (TNF-α), IL-10, IL-6, IL-1β, IL-8, myeloperoxidase (MPO), nitric oxide metabolites (NOx)] were evaluated before and after 90-day of supplementation with a synbiotic.
RESULTS:No significance difference was found between the baseline and end evaluations of FEV1 and nutricional status markers. A significant interaction (time vs. group) was found for IL-12 (p = 0.010) and myeloperoxidase (p = 0.036) between PCFG and SCFG, however, the difference was not maintained after assessing the groups individually. NOx diminished significantly after supplementation in the SCFG (p = 0.030). In the SCFG with positive bacteriology, reductions were found in IL-6 (p = 0.033) and IL-8 (p = 0.009) after supplementation.
CONCLUSIONS: Synbiotic supplementation shown promise at diminishing the pro-inflammatory markers IL-6, IL-8 in the SCFG with positive bacteriology and NOx in the SCFG in children/adolescents with CF
Dysfunction of Nrf-2 in CF Epithelia Leads to Excess Intracellular H2O2 and Inflammatory Cytokine Production
Cystic fibrosis is characterized by recurring pulmonary exacerbations that lead to the deterioration of lung function and eventual lung failure. Excessive inflammatory responses by airway epithelia have been linked to the overproduction of the inflammatory cytokine IL-6 and IL-8. The mechanism by which this occurs is not fully understood, but normal IL-1β mediated activation of the production of these cytokines occurs via H2O2 dependent signaling. Therefore, we speculated that CFTR dysfunction causes alterations in the regulation of steady state H2O2. We found significantly elevated levels of H2O2 in three cultured epithelial cell models of CF, one primary and two immortalized. Increases in H2O2 heavily contributed to the excessive IL-6 and IL-8 production in CF epithelia. Proteomic analysis of three in vitro and two in vivo models revealed a decrease in antioxidant proteins that regulate H2O2 processing, by ≥2 fold in CF vs. matched normal controls. When cells are stimulated, differential expression in CF versus normal is enhanced; corresponding to an increase in H2O2 mediated production of IL-6 and IL-8. The cause of this redox imbalance is a decrease by ∼70% in CF cells versus normal in the expression and activity of the transcription factor Nrf-2. Inhibition of CFTR function in normal cells produced this phenotype, while N-acetyl cysteine, selenium, an activator of Nrf-2, and the overexpression of Nrf-2 all normalized H2O2 processing and decreased IL-6 and IL-8 to normal levels, in CF cells. We conclude that a paradoxical decrease in Nrf-2 driven antioxidant responses in CF epithelia results in an increase in steady state H2O2, which in turn contributes to the overproduction of the pro-inflammatory cytokines IL-6 and IL-8. Treatment with antioxidants can ameliorate exaggerated cytokine production without affecting normal responses
Restriction and Sequence Alterations Affect DNA Uptake Sequence-Dependent Transformation in Neisseria meningitidis
Transformation is a complex process that involves several interactions from the binding and uptake of naked DNA to homologous recombination. Some actions affect transformation favourably whereas others act to limit it. Here, meticulous manipulation of a single type of transforming DNA allowed for quantifying the impact of three different mediators of meningococcal transformation: NlaIV restriction, homologous recombination and the DNA Uptake Sequence (DUS). In the wildtype, an inverse relationship between the transformation frequency and the number of NlaIV restriction sites in DNA was observed when the transforming DNA harboured a heterologous region for selection (ermC) but not when the transforming DNA was homologous with only a single nucleotide heterology. The influence of homologous sequence in transforming DNA was further studied using plasmids with a small interruption or larger deletions in the recombinogenic region and these alterations were found to impair transformation frequency. In contrast, a particularly potent positive driver of DNA uptake in Neisseria sp. are short DUS in the transforming DNA. However, the molecular mechanism(s) responsible for DUS specificity remains unknown. Increasing the number of DUS in the transforming DNA was here shown to exert a positive effect on transformation. Furthermore, an influence of variable placement of DUS relative to the homologous region in the donor DNA was documented for the first time. No effect of altering the orientation of DUS was observed. These observations suggest that DUS is important at an early stage in the recognition of DNA, but does not exclude the existence of more than one level of DUS specificity in the sequence of events that constitute transformation. New knowledge on the positive and negative drivers of transformation may in a larger perspective illuminate both the mechanisms and the evolutionary role(s) of one of the most conserved mechanisms in nature: homologous recombination
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A
On 2017 August 17, the gravitational-wave event GW170817 was observed by the Advanced LIGO and Virgo detectors, and the gamma-ray burst (GRB) GRB 170817A was observed independently by the Fermi Gamma-ray Burst Monitor, and the Anti-Coincidence Shield for the Spectrometer for the International Gamma-Ray Astrophysics Laboratory. The probability of the near-simultaneous temporal and spatial observation of GRB 170817A and GW170817 occurring by chance is . We therefore confirm binary neutron star mergers as a progenitor of short GRBs. The association of GW170817 and GRB 170817A provides new insight into fundamental physics and the origin of short GRBs. We use the observed time delay of between GRB 170817A and GW170817 to: (i) constrain the difference between the speed of gravity and the speed of light to be between and times the speed of light, (ii) place new bounds on the violation of Lorentz invariance, (iii) present a new test of the equivalence principle by constraining the Shapiro delay between gravitational and electromagnetic radiation. We also use the time delay to constrain the size and bulk Lorentz factor of the region emitting the gamma-rays. GRB 170817A is the closest short GRB with a known distance, but is between 2 and 6 orders of magnitude less energetic than other bursts with measured redshift. A new generation of gamma-ray detectors, and subthreshold searches in existing detectors, will be essential to detect similar short bursts at greater distances. Finally, we predict a joint detection rate for the Fermi Gamma-ray Burst Monitor and the Advanced LIGO and Virgo detectors of 0.1-1.4 per year during the 2018-2019 observing run and 0.3-1.7 per year at design sensitivity
Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B
We present the results of the search for gravitational waves (GWs) associated with γ-ray bursts detected during the first observing run of the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO). We find no evidence of a GW signal for any of the 41 γ-ray bursts for which LIGO data are available with sufficient duration. For all γ-ray bursts, we place lower bounds on the distance to the source using the optimistic assumption that GWs with an energy of were emitted within the – Hz band, and we find a median 90% confidence limit of 71 Mpc at 150 Hz. For the subset of 19 short/hard γ-ray bursts, we place lower bounds on distance with a median 90% confidence limit of 90 Mpc for binary neutron star (BNS) coalescences, and 150 and 139 Mpc for neutron star–black hole coalescences with spins aligned to the orbital angular momentum and in a generic configuration, respectively. These are the highest distance limits ever achieved by GW searches. We also discuss in detail the results of the search for GWs associated with GRB 150906B, an event that was localized by the InterPlanetary Network near the local galaxy NGC 3313, which is at a luminosity distance of Mpc (z = 0.0124). Assuming the γ-ray emission is beamed with a jet half-opening angle , we exclude a BNS and a neutron star–black hole in NGC 3313 as the progenitor of this event with confidence >99%. Further, we exclude such progenitors up to a distance of 102 Mpc and 170 Mpc, respectively