376 research outputs found

    Contribution of machining to the fatigue behaviour of metal matrix composites (MMCs) of varying reinforcement size

    Get PDF
    The high cycle constant stress amplitude fatigue performance of metal matrix composite (MMC) components machined by a milling process was investigated in this study as a function of machining speed, feed rate and reinforcement particle size. The presence of reinforcement and particle size were found to be the most influential factors that affected the fatigue life. In contrast to this, the effect of feed and speed on tool-particle interaction, strain hardening and heat generation during milling of MMCs were balanced in such a way that the contributions of feed and speed on fatigue life were negligible. The interactions of different parameters contributed significantly to the fatigue life which indicated that the modelling of fatigue life based on these three parameters was relatively complex. The fatigue life of the machined MMC samples increased with decreasing particle size and increasing feed. However, the fatigue life was not influenced by speed variation. The presence of smaller or no particles induced a complete separation of failed samples, in contrast to that of specimens containing larger reinforcing particles where crack growth was arrested or deflected by the reinforcing particles

    Biofuels and thermal barrier:a review on compression ignition engine performance, combustion and exhaust gas emission

    Get PDF
    The performance of an internal combustion engine is affected when renewable biofuels are used instead of fossil fuels in an unmodified engine. Various engine modifications were experimented by the researchers to optimise the biofuels operated engine performance. Thermal barrier coating is one of the techniques used to improve the biofuels operated engine performance and combustion characteristics by reducing the heat loss from the combustion chamber. In this study, engine tests results on performance, combustion and exhaust emission characteristics of the biofuels operated thermal barrier coated engines were collated and reviewed. The results found in the literature were reviewed in three scenarios: (i) uncoated versus coated engine for fossil diesel fuel application, (ii) uncoated versus coated engine for biofuels (and blends) application, and (iii) fossil diesel use on uncoated engine versus biofuel (and blends) use on coated engine. Effects of injection timing, injection pressure and fuel properties on thermal barrier coatings were also discussed. The material type, thickness and properties of the coating materials used by the research community were presented. The effectiveness and durability of the coating layer depends on two key properties: low thermal conductivity and high thermal expansion coefficient. The current study showed that thermal barrier coatings could potentially offset the performance drop due to use of biofuels in the compression ignition engines. Improvements of up to 4.6% in torque, 7.8% in power output, 13.4% in brake specific fuel consumption, 15.4% in brake specific energy consumption and 10.7% in brake thermal efficiency were reported when biofuels or biofuel blends were used in the thermal barrier coated engines as compared to the uncoated engines. In coated engines, peak cylinder pressure and exhaust gas temperature were increased by up to 16.3 bar and 14% respectively as compared to uncoated condition. However, changes in the heat release rates were reported to be between −27% and +13.8% as compared to uncoated standard engine. Reductions of CO, CO2, HC and smoke emissions were reported by up to 3.8%, 11.1%, 90.9% and 63% respectively as compared to uncoated engines. Significant decreases in the PM emissions were also reported due to use of thermal barrier coatings in the combustion chamber. In contrast, at high speed and at high load operation, increase in the CO and CO2 emissions were also reported in coated engines. Coated engines gave higher NOx emissions by about 4–62.9% as compared to uncoated engines. Combined effects of thermal barrier coatings and optimisation of fuel properties and injection parameters produced further performance and emissions advantages compared to only thermal barrier coated engines. Overall, current review study showed that application of thermal barrier coatings in compression ignition engines could be beneficial when biofuels or biofuel blends are used instead of standard fossil diesel. However, more research is needed combining coatings, types of biofuels and other engine modifications to establish a concrete conclusion on the effectiveness of the thermal barrier when biofuels are used in the compression ignition engine. Reduction of NOx emissions is another important R & D area

    Physical Processes in Star Formation

    Get PDF
    © 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00693-8.Star formation is a complex multi-scale phenomenon that is of significant importance for astrophysics in general. Stars and star formation are key pillars in observational astronomy from local star forming regions in the Milky Way up to high-redshift galaxies. From a theoretical perspective, star formation and feedback processes (radiation, winds, and supernovae) play a pivotal role in advancing our understanding of the physical processes at work, both individually and of their interactions. In this review we will give an overview of the main processes that are important for the understanding of star formation. We start with an observationally motivated view on star formation from a global perspective and outline the general paradigm of the life-cycle of molecular clouds, in which star formation is the key process to close the cycle. After that we focus on the thermal and chemical aspects in star forming regions, discuss turbulence and magnetic fields as well as gravitational forces. Finally, we review the most important stellar feedback mechanisms.Peer reviewedFinal Accepted Versio

    Search for leptophobic Z ' bosons decaying into four-lepton final states in proton-proton collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for black holes and other new phenomena in high-multiplicity final states in proton-proton collisions at root s=13 TeV

    Get PDF
    Peer reviewe

    Measurements of differential production cross sections for a Z boson in association with jets in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe

    Search for high-mass diphoton resonances in proton-proton collisions at 13 TeV and combination with 8 TeV search

    Get PDF
    Peer reviewe

    Search for heavy resonances decaying into a vector boson and a Higgs boson in final states with charged leptons, neutrinos, and b quarks

    Get PDF
    Peer reviewe

    Measurement of the mass difference between top quark and antiquark in pp collisions at root s=8 TeV

    Get PDF
    Peer reviewe
    corecore