292 research outputs found

    Seeking multiple solutions:an updated survey on niching methods and their applications

    Get PDF
    Multi-Modal Optimization (MMO) aiming to locate multiple optimal (or near-optimal) solutions in a single simulation run has practical relevance to problem solving across many fields. Population-based meta-heuristics have been shown particularly effective in solving MMO problems, if equipped with specificallydesigned diversity-preserving mechanisms, commonly known as niching methods. This paper provides an updated survey on niching methods. The paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of niching methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment. Furthermore, the paper surveys previous attempts at leveraging the capabilities of niching to facilitate various optimization tasks (e.g., multi-objective and dynamic optimization) and machine learning tasks (e.g., clustering, feature selection, and learning ensembles). A list of successful applications of niching methods to real-world problems is presented to demonstrate the capabilities of niching methods in providing solutions that are difficult for other optimization methods to offer. The significant practical value of niching methods is clearly exemplified through these applications. Finally, the paper poses challenges and research questions on niching that are yet to be appropriately addressed. Providing answers to these questions is crucial before we can bring more fruitful benefits of niching to real-world problem solving

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Cooperative Particle Swarm Optimization for Combinatorial Problems

    Get PDF
    A particularly successful line of research for numerical optimization is the well-known computational paradigm particle swarm optimization (PSO). In the PSO framework, candidate solutions are represented as particles that have a position and a velocity in a multidimensional search space. The direct representation of a candidate solution as a point that flies through hyperspace (i.e., Rn) seems to strongly predispose the PSO toward continuous optimization. However, while some attempts have been made towards developing PSO algorithms for combinatorial problems, these techniques usually encode candidate solutions as permutations instead of points in search space and rely on additional local search algorithms. In this dissertation, I present extensions to PSO that by, incorporating a cooperative strategy, allow the PSO to solve combinatorial problems. The central hypothesis is that by allowing a set of particles, rather than one single particle, to represent a candidate solution, combinatorial problems can be solved by collectively constructing solutions. The cooperative strategy partitions the problem into components where each component is optimized by an individual particle. Particles move in continuous space and communicate through a feedback mechanism. This feedback mechanism guides them in the assessment of their individual contribution to the overall solution. Three new PSO-based algorithms are proposed. Shared-space CCPSO and multispace CCPSO provide two new cooperative strategies to split the combinatorial problem, and both models are tested on proven NP-hard problems. Multimodal CCPSO extends these combinatorial PSO algorithms to efficiently sample the search space in problems with multiple global optima. Shared-space CCPSO was evaluated on an abductive problem-solving task: the construction of parsimonious set of independent hypothesis in diagnostic problems with direct causal links between disorders and manifestations. Multi-space CCPSO was used to solve a protein structure prediction subproblem, sidechain packing. Both models are evaluated against the provable optimal solutions and results show that both proposed PSO algorithms are able to find optimal or near-optimal solutions. The exploratory ability of multimodal CCPSO is assessed by evaluating both the quality and diversity of the solutions obtained in a protein sequence design problem, a highly multimodal problem. These results provide evidence that extended PSO algorithms are capable of dealing with combinatorial problems without having to hybridize the PSO with other local search techniques or sacrifice the concept of particles moving throughout a continuous search space

    Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions

    Get PDF
    This overview gravitates on research achievements that have recently emerged from the confluence between Big Data technologies and bio-inspired computation. A manifold of reasons can be identified for the profitable synergy between these two paradigms, all rooted on the adaptability, intelligence and robustness that biologically inspired principles can provide to technologies aimed to manage, retrieve, fuse and process Big Data efficiently. We delve into this research field by first analyzing in depth the existing literature, with a focus on advances reported in the last few years. This prior literature analysis is complemented by an identification of the new trends and open challenges in Big Data that remain unsolved to date, and that can be effectively addressed by bio-inspired algorithms. As a second contribution, this work elaborates on how bio-inspired algorithms need to be adapted for their use in a Big Data context, in which data fusion becomes crucial as a previous step to allow processing and mining several and potentially heterogeneous data sources. This analysis allows exploring and comparing the scope and efficiency of existing approaches across different problems and domains, with the purpose of identifying new potential applications and research niches. Finally, this survey highlights open issues that remain unsolved to date in this research avenue, alongside a prescription of recommendations for future research.This work has received funding support from the Basque Government (Eusko Jaurlaritza) through the Consolidated Research Group MATHMODE (IT1294-19), EMAITEK and ELK ARTEK programs. D. Camacho also acknowledges support from the Spanish Ministry of Science and Education under PID2020-117263GB-100 grant (FightDIS), the Comunidad Autonoma de Madrid under S2018/TCS-4566 grant (CYNAMON), and the CHIST ERA 2017 BDSI PACMEL Project (PCI2019-103623, Spain)

    Optimization of habitat suitability models for freshwater species distribution using evolutionary algorithms

    Get PDF

    Applications of gravitational search algorithm in engineering

    Get PDF
    Gravitational search algorithm (GSA) is a nature-inspired conceptual framework with roots in gravitational kinematics, a branch of physics that models the motion of masses moving under the influence of gravity. In a recent article the authors reviewed the principles of GSA. This article presents a review of applications of GSA in engineering including combinatorial optimization problems, economic load dispatch problem, economic and emission dispatch problem, optimal power flow problem, optimal reactive power dispatch problem, energy management system problem, clustering and classification problem, feature subset selection problem, parameter identification, training neural networks, traveling salesman problem, filter design and communication systems, unit commitment problem and multiobjective optimization problems

    A multi-angle hierarchical differential evolution approach for multimodal optimization problems

    Get PDF
    Multimodal optimization problem (MMOP) is one of the most common problems in engineering practices that requires multiple optimal solutions to be located simultaneously. An efficient algorithm for solving MMOPs should balance the diversity and convergence of the population, so that the global optimal solutions can be located as many as possible. However, most of existing algorithms are easy to be trapped into local peaks and cannot provide high-quality solutions. To better deal with MMOPs, considerations on the solution quality angle and the evolution stage angle are both taken into account in this paper and a multi-angle hierarchical differential evolution (MaHDE) algorithm is proposed. Firstly, a fitness hierarchical mutation (FHM) strategy is designed to balance the exploration and exploitation ability of different individuals. In the FHM strategy, the individuals are divided into two levels (i.e., low/high-level) according to their solution quality in the current niche. Then, the low/high-level individuals are applied to different guiding strategies. Secondly, a directed global search (DGS) strategy is introduced for the low-level individuals in the late evolution stage, which can improve the population diversity and provide these low-level individuals with the opportunity to re-search the global peaks. Thirdly, an elite local search (ELS) strategy is designed for the high-level individuals in the late evolution stage to refine their solution accuracy. Extensive experiments are developed to verify the performance of MaHDE on the widely used MMOPs test functions i.e., CEC’2013. Experimental results show that MaHDE generally outperforms the compared state-of-the-art multimodal algorithms
    • …
    corecore