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ABSTRACT Multimodal optimization problem (MMOP) is one of the most common problems in engineer-
ing practices that requires multiple optimal solutions to be located simultaneously. An efficient algorithm
for solving MMOPs should balance the diversity and convergence of the population, so that the global
optimal solutions can be located as many as possible. However, most of existing algorithms are easy
to be trapped into local peaks and cannot provide high-quality solutions. To better deal with MMOPs,
considerations on the solution quality angle and the evolution stage angle are both taken into account in
this paper and a multi-angle hierarchical differential evolution (MaHDE) algorithm is proposed. Firstly,
a fitness hierarchical mutation (FHM) strategy is designed to balance the exploration and exploitation ability
of different individuals. In the FHM strategy, the individuals are divided into two levels (i.e., low/high-level)
according to their solution quality in the current niche. Then, the low/high-level individuals are applied to
different guiding strategies. Secondly, a directed global search (DGS) strategy is introduced for the low-
level individuals in the late evolution stage, which can improve the population diversity and provide these
low-level individuals with the opportunity to re-search the global peaks. Thirdly, an elite local search (ELS)
strategy is designed for the high-level individuals in the late evolution stage to refine their solution accuracy.
Extensive experiments are developed to verify the performance of MaHDE on the widely used MMOPs
test functions i.e., CEC’2013. Experimental results show that MaHDE generally outperforms the compared
state-of-the-art multimodal algorithms.

INDEX TERMS Multi-angle hierarchical, two-stage search, differential evolution, multimodal optimization
problems.

I. INTRODUCTION
Multimodal optimization problems (MMOPs), as one kind
of challenging and interesting optimization problems, have
attracted increasing attentions in recent years [1]–[4].
MMOPs are an important problem area as it widely exists in
many real-world applications [5], such as virtual camera com-
position problems [6], metabolic network modeling problems
[7], laser pulse shaping problems [8], job scheduling prob-
lems [9], [10], and neutral network problems [11]. These
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MMOPs are required the algorithms to locate the global
peaks as many as possible and refine the accuracy of the
found solutions as high as possible, so that the high-quality
decisions can be finally made. In detail, MMOP is a kind
of complex optimization problem that requires the algorithm
to not only locate multiple global peaks simultaneously, but
also achieve certain accuracy of solutions on the global peaks.
In fact, the algorithm for MMOPs faces the problem of how
to improve the population diversity to locate more peaks and
accelerate the convergence speed on each of the found peaks.

Different from the single optimization problems (SOPs),
MMOPs have many local peaks and multiple global peaks.
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Most existing evolutionary algorithms (EAs) are successful
used in solving SOPs [12]–[18]. Drawing on the success of
EAs in SOPs, many advanced EAs are designed for solv-
ing MMOPs, such as differential evolution (DE) [19]–[28],
particle swarm optimization (PSO) [29], [30], genetic algo-
rithm (GA) [31]–[34], and ant colony optimization [35].
These algorithms all obtain a great success when dealing
with MMOPs. Among these algorithms, DE variants have
shown their effectiveness and superiority [19]–[28]. How-
ever, existing DE-based multimodal optimization algorithms
still have some limitations. Firstly, the DE/rand or DE/best
strategy are widely used in many algorithms, but there are
still some problems. The DE/rand strategy decreases the con-
vergence speed due to the random searching directions, while
the DE/best strategy provides homogeneous guidance, which
makes the population easily get trapped into local peaks.
Therefore, different strategies should be used for different
individuals according to their fitness quality. Secondly, tra-
ditional DEs may suffer from the dilemma of the balance
between exploration and exploitation because they usually
use the fixed evolutionary operators during thewhole process.
This is not efficient to satisfy the search requirements of
different evolution stages.

Therefore, to solve above difficulties, this paper enhances
the DE algorithm from two angles. The one angle is to
consider the different fitness quality of the individuals so as to
configure them with different mutation strategies satisfy their
search requirements. The other angle is to consider the differ-
ent evolution stages so as to carry out different evolutionary
operators to satisfy the search requirements. Firstly, a fitness
hierarchical mutation (FHM) strategy is proposed that divide
the individuals into different levels based on individuals’ fit-
ness quality, so that they can use different mutation strategies
to avoid the weakness of single mutation strategy. Secondly,
by considering the angle of evolution stage, a directed global
search (DGS) strategy and an elite local search (ELS) strategy
are proposed in the late evolution stage to help enhance the
population diversity for locating more peaks and to help
refine the accuracy of the good solutions found, respectively.
This way, a multi-angle hierarchical DE (MaHDE) is pro-
posed, whose main differences with the common method in
solving MMOPs is shown in Fig. 1. The frameworks of the
commonmethod and theMaHDE to solveMMOPs are shown
as Fig. 1(a) and Fig. 1(b), respectively. The novelties and
advantages of the proposed MaHDE algorithm are described
as the following three aspects.

1) The FHM strategy is proposed to balance the explo-
ration and exploitation ability of different individuals.
To achieve these targets, FHM divides the individuals
into two levels (i.e., low/high-level) according to their
fitness quality in the current niche. The low-level indi-
viduals are guided by the best individual of a niche to
move towards its nearest peak. In addition, the high-
level individuals are guided by themselves to maintain
their superiority. Moreover, the neighbors’ perturbation

FIGURE 1. The difference between the common method and MaHDE in
solving MMOPs. (a) The framework of the common method to solve
MMOPs. (b) The framework of MaHDE to solve MMOPs.

and the global perturbation are added to the evolution of
low-level and high-level individuals, respectively, thus
helping the algorithm to avoid local peaks.

2) The DGS strategy is designed for the low-level individ-
uals in the late evolution stage to increase the popula-
tion diversity and provide the new chance to re-search
for the new global peaks. By expanding the search
range of the low-level individuals, the DGS strategy
helps them jump out of the local peaks and further to
improve the population diversity.

3) The ELS strategy is proposed to refine the solution
accuracy and save the fitness evaluations. Concretely,
the ELS strategy is only performed on the high-level
individuals in the current niche, which works via Gauss
perturbation for its narrow sampling space. In this way,
the ELS not only can refine the solution accuracy, but
also can save the number of fitness evaluations.

The rest of this paper is organized as follows. Section II
reviews the DE algorithm and the related works of MMOPs.
Section III presents the proposed MaHDE algorithm. The
experimental study is shown in Section IV. Finally, the con-
clusions are given in Section V.

II. RELATED WORKS
A. DE
DE was first proposed by Storn and Price [36], which works
through mutation, crossover, and selection strategies to imi-
tate the process of biological evolution. Due to its simple and
efficient performance, DE is adopted by many researches to
solve some complex problems [25], [37]–[42].

1) MUTATION
DE is to start from a randomly generated initial population,
use the difference vector of two randomly selected individ-
uals (i.e., xg_r2, xg_r3) as the source of a third individual
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(i.e., xg_r1), then a mutation vector (vi) is produced by
weighting the difference vector and xg_r1. This operation is
called mutation. The common used mutation strategies as (1)
and (2), which are named DE/rand and DE/best, respectively.

vi = xr1 + F × (xr2 − xr3) (1)

vi = xbest + F × (xr1 − xr2) (2)

where i = 1, 2, . . . ,NP,NP is the population size. xg_r1, xg_r2,
xg_r3 are randomly selected from the population, and xg_r1 6=
xg_r2 6= xg_r3 6= i. xbest is the best individual in the current
generation. F is often referred to as the scaling factor, which
is used to control the weights of the difference vectors.

2) CROSSOVER
The new individual ui is generated by using a binomial
crossover operation on the individuals xi and vi as

uij =

{
vij if (randj(0, 1) ≤ CR) or (j = jrand )
xij otherwise

(3)

where j = 1, 2, . . . , D, D is the dimension of search space.
jrand is a randomly selected number from {1, 2, . . . , D}.
randj(0, 1) is a random number between 0 and 1, which is
different in each dimension. CR is the crossover probability,
j = jrand can ensure that at least one dimension comes from
vij.

3) SELECTION
If the fitness value of ui (i.e., f (ui)) is better than that of
xi, the ui is replaced by xi in the next generation, otherwise
xi remains, and the process is called selection as (4) for a
maximization problem.

xi =

{
ui, if f (ui) ≥ f (xi)
xi, otherwise

(4)

Recently, another efficient selection method has been
widely used in many researches, where ui is compared to
its nearest individual xp in the parental generation. If f (ui) is
better than that of xp, then xp is replaced by ui and enter into
the next generation. This selection process is shown as (5) and
it is adopted in this paper.

xi =

{
ui, if f (ui) ≥ f (xp)
xp, otherwise

(5)

B. RELATED WORKS ON MMOPs
There aremany researches onMMOPs. To better review these
researches, we divide them into three categories according
to the different base algorithms. They are MMOPs based
on DE, MMOPs based on PSO, and MMOPs based on GA,
respectively.

1) DE FOR MMOPs
The crowding DE (CDE) [19] and speciation DE (SDE)
[20] are two typical methods used to solve MMOPs. CDE
works by comparing the fitness of ui (generated by crossover)

with the nearest individual in parental generation. Then the
better individual is selected to enter the next generation.
SDE locates multiple peaks by dividing the population into
multiple independent sub-populations. However, these two
methods all need to employ extra parameters (i.e., the crowd-
ing size in CDE and the speciation radius in SDE), which
are sensitive to the performance of algorithm. To reduce the
influence of parameters on the algorithm, Qu et al. [21]
designed a neighborhood mutation strategy by borrowing the
neighborhoods information, resulting in a neighborhoodCDE
(NCDE) and a neighborhood SDE (NSDE). Subsequently,
Gao et al. [22] utilized the clustering technique to divide
the population into several subpopulations, and combing
the self-adaptive parameter control technique to deal with
MMOPs, resulting in self-CCDE and Self-CSDE. By design-
ing the new mutation strategies, Biswas et al [23] pro-
posed an information sharing mechanism based on CDE and
SDE, termed as LoICDE and LoISDE. Meanwhile, a parent-
centric normalized mutation strategy also was designed by
Biswas et al. [24], resulting in PNPCDE.

2) PSO FOR MMOPs
To solve the poor local search ability of the PSO-based
niching algorithms, Li [29] designed a ring neighborhood
topology based on PSO, which termed as r2pso and r3pso.
Subsequently, a distance-based locally informed particle
swarm (LIPS) optimizer was proposed by Qu et al. [30],
which formed a stable niching by using the neighborhood
information to solve the niching parameter sensitivity prob-
lem algorithm in MMOPs. Parsopoulos et al. [43] proposed
a sequential PSO niching technique by using the objective
function stretching to solve MMOPs. Brits et al. [44] adopted
an initial swarm to produce the multiple sub-swarms by
monitoring the fitness of particles. The number of particles
in a sub-swarm can change by absorbing particles from the
main swarm. Ren et al. [45] proposed a scatter learning PSO
algorithm for MMOPs, which contracted an exemplar pool
by collecting the high-quality solutions in the solution space.

3) GA FOR MMOPs
Many researches used GA to solve MMOPs as reviewed
in [46]. Li et al. [31] divided the population into several
species according to their similarity, and formed a species
conservation technique for evolving parallel subpopulations
to solveMMOPs. Gan andWarwick [32] proposed a dynamic
niche clustering technique-based fitness sharing to solve
MMOPs. Petrowski [33] proposed a new method that sharing
the resources within subpopulations of individuals character-
ized by some similarities, and combined the best individuals
of each subpopulation with GA to solve MMOPs. Bandaru
and Deb [47] combined the power of dominance with tra-
ditional variable-space niching to solve MMOPs, which is
implemented within the NSGA-II framework, and termed as
ANSGAII.

Recently, Lin et al. [48] designed a novel algorithm that
focus on the formulation, balance, and keypoint of species
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FIGURE 2. The different distributions of individuals in a niche.

to balance exploration and exploitation in generating off-
spring. Wang et al. [49] proposed an automatic niching DE,
in which the affinity propagation clustering that did not need
sensitive clustering parameter was used to divide the pop-
ulation. Zhao et al. [50] borrowed the local binary operator
idea in image processing to help efficiently form the niches.
Chen et al. [51] designed a distributed individual DE that
treated each individual as a distributed niche to track peaks.
These algorithms all use DE as the base algorithm to solve
MMOPs and achieve a great success. Therefore, this paper
proposes a new algorithm based on DE, which designs differ-
ent strategies to accommodate individuals of different fitness
levels and search requirement in different evolution stages for
efficiently solving MMOPs.

III. MaHDE
In this section, the motivations of MaHDE are first intro-
duced. Then, the FHM strategy is proposed to balance the
exploration and exploitation ability of different individuals.
Furthermore, the DGS strategy is proposed in the late evolu-
tion stage to increase the population diversity and provide the
new opportunity for the low-level individuals to re-search for
the global peaks. In addition, the ELS strategy is introduced
to refine the solution accuracy of the high-level individuals.
Last but not least, the completed MaHDE algorithm is given.
The complexity analysis of MaHDE is given finally.

A. MOTIVATIONS
Since MMOPs have multiple peaks, it is most efficient
method to partition the population into several overlapping or
independent niches (subpopulations), and each niche targets
to locate a peak. In this paper, the overlapping niches are

adopted to locate more peaks. Here, how to uses the indi-
vidual’s information of a niche (e.g., the fitness of individ-
uals, the distance between individuals) has a key effective to
enhance the performance of algorithm. From this perspective,
there are several interesting observations.

Fig. 2 shows some different situations of individuals’ dis-
tribution in a niche. For ease of description, we define the
dotted circle with red represents a niche, the solid circles (e.g.
A, B, and C) represent the individuals in a niche, and the
solid circle with red (e.g., A) represents the current individual.
Fig. 2(a) shows the diagram of whether to guide A by B or
C. Here, by calculating the vertical distance from B, C to A
(i.e., BO1, CO2), we can obtain that CO2 is larger than BO1.
Besides, we can also find that f (C) (i.e., the fitness of C) is
better than f (B) by calculating the fitness of B, C. This shows
that C is the better individual within the niche. Therefore, A is
guided by C to pursue the global peaks quickly. Similarly,
when A, B, and C are on the same peak as Fig. 2(b), the
vertical distance from B, C to A (i.e., BO1, CO2) can be
calculated and we can obtain that CO2 is larger than BO1.
Moreover, f (C) is better than f (B) by calculating the fitness
of them. Therefore, A is also guided by C in this situation to
improve the search ability. Fig. 2(c) shows that A and C are
on the same peak, but A and B are on different peaks. From
Fig. 2(c) we can find that CO2 is larger than BO1 and f (C)
is better than f (B). Therefore, A is also guided by C in this
situation to avoid local peaks.

From the above three situations, we can find that when
f (A) is lower than the mean fitness (f̄ ) of the current niche,
using the better individuals (i.e., the larger vertical distance)
to guide A can help to locate the global peaks quickly and
avoid local peaks. Motivated by these ideas, the individuals
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of a niche can be divided into two groups according to their
fitness. Here, f̄ is used as a boundary, and we can obtain the
individuals worse than f̄ and marked as the low-level individ-
uals. Meanwhile, the individuals better than f̄ are marked as
the high-level individuals. The best individual of the niche
is used as a leader to guide the low-level individuals, this
way can make these individuals move towards the promising
direction and further to locate the nearest peak. On the con-
trary, the high-level individuals are guided by themselves to
maintain their superiority in the niche. Besides, the neighbors
or global perturbation can be added to the above evolution to
avoid local peaks, respectively. Therefore, an FHM strategy
is proposed to make the low-level individuals move towards
the nearest peak andmake the high-level individuals maintain
the global peaks.

Besides, with the population evolving, most of the indi-
viduals converge to the local or global peaks, leading to the
loss of population diversity. Moreover, in the late evolution
stage, the low-level individuals may trap into local peaks due
to its poor fitness, and the high-level individuals may close
to the global peaks. Therefore, we consider performing the
DGL strategy on the low-level individuals to improve the
population diversity and help these low-level individuals to
obtain the chance of re-search for the global peaks. Besides,
the ELS strategy is performed on the high-level individuals
to refine their accuracy.

To sum up, the FHM strategy is proposed based on the
fitness hierarchical technique, the DGL strategy and ELS
strategy are performed on the low-level individuals and high-
level individuals in the late evolution stage, respectively.
Therefore, a multi-angle (i.e., fitness quality and evolutionary
stage) hierarchical differential evolution (MaHDE) is pro-
posed for MMOPs in this paper.

B. FHM STRATEGY
Generally speaking, the different individuals of a niche adopt
the single mutation strategy (e.g. DE/rand, DE/best). How-
ever, the DE/rand strategy decreases the convergence speed
due to the random searching directions, and the DE/best strat-
egy is easy to trap into local peaks for the homogeneous guid-
ance direction. To avoid this situation, the FHM strategy can
provide adaptive guide individual evolution, which divides
the individuals of a niche into two levels (i.e., low/high level)
according to their fitness quality. On one hand, the mean
fitness (f̄1) of the niche that formed by the current individual
xi is calculated to measure the individuals’ level. If the fitness
of xi (i.e., f (xi)) is worse than or equal to (f̄1) (i.e., f (xi) ≤ f̄1),
the xi is marked as a low-level individual. To accelerate the
convergence speed, the best individual in a niche (xnbest) is
used to guide xi to quickly locate to the global optimum that
nearest to xi. Besides, the neighbors’ perturbation is added to
the evolutionary process to avoid local peaks. On the other
hand, if f (xi) is better than f̄1(i.e., f (xi) > f̄1), it means that
xi is a promising solution in this niche and is marked as
a high-level individual. To maintain the superiority of the
high-level individual in the niche, we can use itself as the

base for the mutation. Besides, the global perturbation is
added to evolution to avoid local peaks. By combing these
two-level mutation strategies, the FHM strategy not only can
accelerate the convergence speed but also can maintain the
found solutions. The detailed process of the FHM strategy is
as follows.

i) Find the nearest K individuals to the current individual
xi to form the niche of xi and stores them in S.
ii) Calculate the mean fitness (f̄1) of these K individuals

(not include xi itself) as

f̄1 =

∑
xj∈S

f (xj)

|S|
(6)

iii) Select the corresponding mutation strategy according
to f (xi) as

vi =

{
xnbest + F × (xn_r1 − xn_r2 ), if f (xi) ≤ f̄1
xi + F × (xg_r1 − xg_r2), otherwise

(7)

where xnbest is the best individual in the current niche. xn_r1
and xn_r2 are two individuals randomly selected from S,
and xn_r1 6= xn_r2 ∈ S. Besides, xg_r1 and xg_r2 are two
individuals randomly selected from the population excluding
S, and xg_r1 6= xg_r2 6= i /∈ S.

C. DGS STRATEGY
With population evolving, most of the individuals gradually
converge to local or global peaks, leading to a loss of popu-
lation diversity in the late evolution stage. This situation will
cause some peaks not to be located due to the poor population
diversity. It is necessary to increase the population diversity in
the late evolution stage. Therefore, in the late evolution stage
of MaHDE, we use two strategies as DGS and ELS for those
low-level individuals and high-level individuals, respectively.
Similar to the FHM strategy, we also use the mean fitness
of all the individuals of the niche to divide the individuals.
It should be noted that as the DGS/ELS is carried out after
the FHM, crossover, and selection, as Fig. 1(b), the fitness
values of the individuals in the niche have changed and we
should re-calculate the mean fitness and denote it as f̄2.
Herein, the DGS is described for the individual xi whose

fitness is worse than f2 (i.e., f (xi) < f̄2). Such an individual
is regarded as low-level individual, which is not located the
global peaks due to its poor fitness quality in the late evolution
stage. Moreover, it may be trapped into local peaks due to
the stagnation in late evolution stage. It will be meaningless
to continue to evaluate the low-level individuals. Therefore,
expanding the search range for these low-level individuals
can help them jump out of the local peaks. Here, the DGS
strategy is proposed as (8) to expand the search space of
the low-level individual xi in the late evolution stage. Here,
we define when the population satisfies fe > η× MaxFEs as
the late evolution stage.

p_xi = xi +
f (xg_r1)− f (xg_r2)

f
(
xgbest

)
− f

(
xgworst

) × (xg_r1 − xg_r2) (8)
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where fe is the current number of fitness evaluations,MaxFEs
denotes the maximum number of fitness evaluations. η is a
parameter that controls the evolutionary stages of population.
The impact of the value of η on the algorithm will be inves-
tigated in Section IV-E. Besides, xgbest and xgworst are the
best individual and the worst individual (measured by fitness)
of the whole population in current generation. f (xgbest) and
f (xgworst) are the fitness of xgbest and xgworst . xg_r1 and xg_r2
are two individuals selected from the population randomly
excluding S, and xg_r1 6= xg_r2 6= i /∈ S.

In (8), the second part controls the search direction. That
is, if f (xg_r1) > f (xg_r2), (xg_r1− xg_r2) is the promis-
ing direction to exploit more optimal regions. Conversely,
if f (xg_r1) < f (xg_r2), (xg_r1− xg_r2) is the promising direc-
tion to explore more global peaks. Therefore, this global
search strategy can be considered as the directed. Note that
only the new individual p_xi will enter the next genera-
tion when its fitness is better than the original individual xi
(i.e., f (p_xi) > f (xi)). By this way, the DGS strategy can
improve the population diversity.Moreover, the DGS strategy
provides the low-level individuals with the opportunity to
re-search for the global peaks.

D. ELS STRATEGY
To refine the solution accuracy, the local search strategy is a
widely used method. However, if a local search is performed
on each solution, it will result in awaste of fitness evaluations.
Conversely, if a local search is performed only for the best
individual, it may be useful to single optimization problems
(i.e., only one global peaks solution can be located) and it
will not works to MMOPs. Since the global peaks generally
survive in around the better individuals in the late evolution
stage, we consider that the local search strategy is executed
only for the high-level individuals in the late evolution stage.
Note that by comparing the fitness of current individual f (xi)
with the mean fitness (f̄2) of the niche formed by the current
individual xi, we can obtain the high-level individuals (i.e.,
f (xi) > f̄2). Here, the ELS strategy is proposed as (9) to refine
the accuracy of the high-level individuals in the late evolution
stage.

q_xi = xi + (Uj − Lj)× N (µ, σ ) if f (xi) > f̄2 (9)

where Uj and Lj are the upper boundary and lower boundary
of the search space. Besides, N (µ, σ ) is the Gaussian distri-
bution, here µ = 0, σ is set to 1.0E−04. Here, it is note that
the better individual is selected into the next generation by
comparing f (xi) and f (q_xi).
In (9), there are two advantages by borrowing the narrow

sampling space of Gaussian distribution. On one hand, the
search range can be controlled around the high-level indi-
viduals, avoiding the blind and ineffective search. On the
other hand, selecting the better individual from xi and q_xi
enter into the next generation ensure that the found solutions
can be maintained in the whole evolutionary process. By this

way, the ELS strategy not only ensures the accuracy of the
solutions to be refined but also avoids a waste of fitness
evaluations in evolution.

E. COMPLETE MaHDE ALGORITHM
The MaHDE includes the FHM strategy, the DGS strategy,
and the ELS strategy for dealing with MMOPs. Here, the
advantages of FHM strategy are shown in the following three
aspects: i) It can accelerate the convergence speed by guiding
the low-level individuals move towards the nearest peak.
ii) It can maintain the superiority of the high-level individuals
by the autonomous guidance strategy. The DGS strategy is
designed for the low-level individuals in the late evolution
stage, which can improve the population diversity by expand-
ing the search range. Besides, the ELS strategy is performed
on the high-level individuals in the late evolution stage, which
can help our MaHDE refine the accuracy of the solutions by
the Gaussian distribution. The detailed process of MaHDE is
shown in Algorithm 1.

The termination condition of the MaHDE algorithm is
when achieves the maximum fitness evaluations (MaxFEs).
Moreover, if the algorithm has located all the global peaks,
it also stops.

F. COMPLEXITY ANALYSIS
In the niching method for MaHDE, the computation com-
plexity isO(NP2×D) because of the calculations of pairwise
distance between individuals, as obtained by line 4 in Algo-
rithm 1. With the population evolution, the FHM, crossover
and selection strategies are conducted generation by genera-
tion, and the MaHDE stops until achieves the MaxFEs. The
complexity of this process is O(NP×D), as obtained by lines
5-8 in Algorithm 1. For the next steps, the DGS strategy
(i.e., lines 13-18) and the ELS strategy (i.e., lines 19-25) are
conducted on the low-level individuals and high-level indi-
viduals, respectively. The computation complexity of them is
O(NP ×D) as obtained by lines 11-25 in Algorithm 1. Sum-
marizing the above analysis, the computational complexity
of MaHDE is O(NP2 × D). It should be noted that the com-
putational complexity of most state-of-the-art multimodal
algorithms isO(NP2×D) due to the sharing distance between
each pair of individuals, which is same to our proposed
MaHDE.

IV. EXPERIMENTAL STUDIES
In this section, a comprehensive experimental analysis and
comparison verify the advantages of our MaHDE algo-
rithm. Firstly, the test functions and experimental settings
are introduced. Secondly, the results of MaHDE with some
state-of-the-art algorithms are listed and analyzed. Thirdly,
we compare MaHDE with two winners of CEC competitions
in different accuracies. Then, the landscapes of the typical
problems are listed to visualize the evolution process. Finally,
the impacts of parameter settings are analyzed.

VOLUME 8, 2020 178327



Z. Hong et al.: MaHDE Approach for MMOPs

Algorithm 1:MaHDE
Begin

1: Randomly initialize the population with size NP and set
fe = 0;

2: While fe < MaxFEs
3: For i = 1 to NP
4: Find the nearest (measured by Euclidean distance)

K individuals of the current individual xi and store
them in S.

5: Calculate the mean fitness of the individuals in S by
(6);

6: Perform the FHM strategy by (7);
7: Perform the crossover strategy by (3);
8: Perform the selection strategy by (5);
9: End For
10: If fe > η× MaxFEs
11: For i = 1 to NP
12: Calculate the mean fitness (f̄2) of the current

niche formed by xi;
13: If f (xi) <f̄2 /∗The DGS strategy∗/
14: Perform the DGS strategy by (8) and

produce the new individual p_xi;
15: Evaluate the fitness of p_xi;
16: fe++;
17: Compare the fitness of xi and p_xi and select

the better one to enter the next generation;
18: Else

/∗The ELS strategy∗/
19: Calculate f (xgbest) and f (xgworst) in current

generation
20: Perform the ELS strategy by (9) and produce

q_xi;
21: Evaluate the fitness of q_xi;
22: fe++;
23: Select the better one from xi and q_xi to

enter the next generation;
24: End If
25: End For
26: End If
27: fe = fe + NP;
28: End While

End

A. TEST FUNCTIONS AND EXPERIMENTAL SETTINGS
The 20 widely used multimodal functions from CEC’2013
are utilized to test the performance of MaHDE. The detailed
features of these test functions can refer to [52]. In addition,
two commonly used measures of MMOPs are adopted to
measure the performance of MaHDE and different compared
algorithms, which are peak ratio (PR) and success rate (SR),,
respectively. The definition of these measures also can refer
to [52].

In this paper, four accuracy levels (ε) that ε = 1E−01,
ε = 1E−02, ε = 1E−03, and ε = 1E−04 are adopted in the

experiments. The results of ε = 1E−04 are mainly reported
as [48]–[51]. Besides, the NP, MaxFEs, and K of MaHDE
adopt the same settings as [50].

The compared algorithms are divided into three groups
according to different algorithms as reviewed in Section II-B.
The first group uses DE as a base algorithm to deal
with MMOPs (i.e., CDE, Self_CCDE, PNPCDE, LoICDE,
NCDE, SDE, and NSDE). The second group uses PSO as
a base to deal with MMOPs (i.e., r2pso, r3pso, and LIPS).
The third group uses GA as a base to deal with MMOPs (i.e.,
ANSGAII). Here, the relevant parameters in the comparison
algorithms are set the same as the settings in their original
papers. Moreover, we ensure a fair comparison between the
proposed method and the comparative methods by the fol-
lowing three settings. Firstly, the proposed algorithm and the
compared algorithms are all tested on the same multimodal
functions in CEC’2013 benchmark set. Secondly, the algo-
rithm parameters in the compared algorithms are set as their
original settings that have been fine turned by their authors.
Thirdly, the NP and the MaxFEs in solving each function
are the same for the proposed algorithm and the compared
algorithms.

Note that all results in this paper are the mean values
obtained from 51 independent runs of the algorithm. The
experimental are conducted on a PC with 8 Intel Core i5
CPUs, 8 Gb memory and Windows10 with 64-bit system.

B. COMPARISON WITH STATE-OF-THE-ART ALGORITHMS
In order to comprehensively analyze the performance of
MaHDE, we compare the PR and SR results of MaHDE
with the compared state-of-the-art algorithms. The results of
PR and SR on F1-F20 with the accuracy ε = 1.0E-04 are
shown in Table 1. The best PR values are bolded in all the
algorithms. In addition, the Wilcoxon rank-sum test [53] is
used to statistically evaluate thePR results ofMaHDE and the
compared algorithms in 51 runs, and the significance level is
set as 0.05. The symbols ‘‘+’’, ‘‘−’’, and ‘‘≈’’ represent the
MaHDE is significantly better, worse, and similar than the
compared algorithms, respectively.

From Table 1, we can find that our MaHDE can locate all
the global peaks on F1− F6 and F10 in each run. For F1−F5,
the results of MaHDE are similar with CDE, Self_CCDE,
PNPCDE, LoICDE, and NCDE. These algorithms can locate
all the global peaks in each run except for CDE and LoICDE
in F4. We can find that these algorithms are the improve-
ments of CDE, which indicates that the principle of CDE
has a good advantage for F1−F5. The r2pso and r3pso also
perform better on F1−F5 except for F4. Because F4 is a
nonlinear function, the global peaks are difficult to identify
by the simple search strategy. For F6, only our MaHDE and
LoICDE can locate all the global peaks in each run with all
the compared algorithms.

MaHDE performs slightly worse than CDE, Self_CCDE,
PNPCDE, and NCDE on F7. But our MaHDE can locate
more than half of the global peaks on F7 (i.e., PR is 0.804).
Moreover, the PR result of MaHDE on F7 is better than
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TABLE 1. The PR and SR results of MaHDE with the state-of-the-art algorithms on accuracy ε = 1.0E-04.

SDE, NSDE, r2pso, r3pso, LIPS, and ANSGAII. For F8, our
MaHDE almost can locate all the global peaks due to its
strong search ability. In addition, the PR result of MaHDE
on F8 is better than all the compared algorithms except for
Self_CCDE. MaHDE performs slightly worse on F9, which
may be because that F9 has many global peaks (i.e., 216) and
local peaks. However, the PR result of F9 is still better than
SDE, NSDE, r2pso, r3pso, LIPS, and ANSGAII.

F11-F20 are the complex and composition functions,
which are difficult to locate all the global peaks for the
algorithms. The PR result of MaHDE on F11 is better than all
the compared algorithms except for Self_CCDE and NCDE.
Here, our MaHDE performs competitive with Self_CCDE
and NCDE on F11, and they all locate most of the global

peaks (i.e., the PR results of these algorithms all achieve
above 0.5). For F12, F15, and F17−F20, our MaHDE per-
forms best on all the compared algorithms. In particular,
F18−F20 are the problems of more than 10 dimensions,
and the search spaces of them are complex that the other
algorithms have difficult to locate the peaks. However, the
MaHDE algorithm can still locate at least 2 global peaks
in each run, which shows the superiority of our MaHDE
algorithm on high-dimensional problems.

Based on the experimental results, the following analysis
is obtained. Firstly, from the fitness quality perspective, the
FHM strategy considers that individuals of different levels
should play a different role to balance the exploration and
exploitation ability of different individuals. By designing
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TABLE 2. The PR and SR results of MaHDE, NEA2, and NMMSO on F1-F20 with accuracies of 1E-01, 1E-02, and 1E-03.

different mutation strategies for the low/high-level individ-
uals, FHM strategy helps the low-level individuals move
towards the nearest peak by the guidance of the best
individual in the current niche, and help the high-level
individuals maintain their superiority by the autonomous
guidance strategy. Secondly, from the evolution stage per-
spective, the DGS strategy is designed for the low-level
individuals in the late evolution stage, which can improve
the population diversity and provide the new opportunity
for exploring more global peaks. Thirdly, the ELS strategy
is designed for the high-level individuals, which borrows
a narrow sampling space of Gaussian distribution to refine
the accuracy of solutions in the late evolution stage. There-
fore, our MaHDE obtains the promising results in dealing
with MMOPs.

C. COMPARISON WITH WINNERS OF CEC COMPETITIONS
To further investigate the performance of MaHDE, we also
compare MaHDE with the winners of CEC’2013 and
CEC’2015, which are the niching CMA-ES via nearest-better
clustering (NEA2) [54] and niching migratory multi-swarm
optimizer (NMMSO) [55], respectively. Table 2 presents the
PR and SR results of MaHDE, NEA2, and NMMSO on
F1−F20 with accuracies of 1E−01, 1E−02, and 1E−03,
respectively. The best results in Table 2 are marked as bold,
and the last line counts the number of best results for each
algorithm on F1-F20, which are marked as ‘‘#Best’’.

From Table 2, we can find that our MaHDE performs
best on most of the test functions compared with NEA2
and NMMSO with ε = 1E−01, 1E−02, and 1E−03. The
‘‘#Best’’ of MaHDE are 17, 15, and 13 when the accuracies
are 1E−01, 1E−02, and 1E−03, respectively. It indicates the

better performance of our MaHDE on F1-F20 compared with
NEA2 and NMMSO in different accuracies.

When ε = 1E−01, the ‘‘#Best’’ of MaHDE, NEA2, and
NMMSO are 17, 8, and 10, respectively. We can find that our
MaHDE can locate all the global peaks in each run on F1−F8,
F10, F11, F14, and F16−F18, that is the PR and SR results
of MaHDE all are 1.000 on these problems (i.e., PR = SR =
1.000). The results of NMMSO are second to MaHDE, and
NMMSO performs slightly poor on the complex problems
(i.e., F14−F20). For ε = 1E−02 and ε = 1E−03, our
MaHDE still is a winner. This indicates that MaHDE has
strong search ability for MMOPs in different accuracies.

D. THE LANDSCAPES OF MaHDE ON THE SELECTED
FUNCTIONS IN DIFFERENT GENERATIONS
To better visualize the distribution of individuals in evolution,
Fig. 3− Fig. 5 show the landscapes of MaHDE with different
typical problems in different generations. Notes that ‘‘Gen’’
denotes the current generation, and Gen= 0 means the initial
distribution of the population. It can be divided into three
groups based on the characteristics of problems. The first
group is the simple functions (i.e., F1 and F2), and the global
peaks of them can be located in early stage of evolution as
shown in Fig. 3. The second group is the problems that have
many peaks (i.e., F6 and F7), locating to all peaks of them
may exhaust a lot of fitness evaluations as shown in Fig. 4.
The third group are more complex functions (i.e., F11 and
F12), and the global peaks of them are difficult to locate with
high accuracy as shown in Fig. 5.

From Fig. 3, we can find that our MaHDE can locate all the
global peaks in the early evolution stage and until all individ-
uals converges to the peaks. Fig. 4 shows the problem with
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FIGURE 3. The landscapes of MaHDE on F1 and F2 in different generations.

FIGURE 4. The landscapes of MaHDE on F6 and F7 in different generations.

more global peaks, which requires the algorithm to maintain
the found solutions during the evolution. From Fig. 4, we can
find that our MaHDE not only can locate all the peak regions
but also can maintain the found solutions until the final
generation. From Fig. 5, we can find that our MaHDE still
can locate all the peaks regions on these complex problems.
It indicates that ourMaHDE not only has strong global search
ability but also can avoid local peaks.

From Fig. 3−Fig. 5, we also can find that the different
individuals can converge around different peaks with the
increase of generation, which indicates that our MaHDE has
a better convergence speed in the whole evolution.

E. IMPACTS OF PARAMETER SETTINGS
The parameter η controls the evolution stage of the popu-
lation. In other words, η balances the algorithm ability of

exploration and exploitation. The small η will reduce the
exploration ability of MaHDE, which causes some individ-
uals to trap into local peaks. Conversely, the large η will
reduce the exploitation ability of MaHDE, so some peaks
cannot be located. Therefore, the value of η is important for
the performance of MaHDE. Table 3 shows the PR results of
MaHDE on F1−F20 with different η.

As we can see form Table 3, on the first 6 functions, differ-
ent η values make nearly no difference in MaHDE on F1-F6,
which can locate all the global peaks in each run except for
η are 0.7 and 0.9. For the problems F7−F9, our MaHDE
obtains the best results when η is 0.4. For F10, F13, F14,
and F16, different η values also make nearly no difference in
MaHDE. However, with the dimension of problem increase,
the advantages of MaHDE become obvious when η is 0.4.
Therefore, we set η is 0.4 in this paper.
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FIGURE 5. The landscapes of MaHDE on F11 and F12 in different generations.

TABLE 3. The PR results of MaHDE with different η.

To further investigate the advantages of the MaHDE when
η = 0.4, we use the results of the MaHDE with η = 0.4 as a
base and perform the Wilcoxon rank-sum test with α = 0.05
on the different PR results of the other η values. Last three
rows of Table 3 (i.e., ‘+’, ‘−’, and ‘≈’) show thePR results of
η = 0.4 are significantly better than, worse than, and similar
to the PR results of other η values on MaHDE, respectively.
From Table 3, we can find that the PR results of η = 0.4 are

significantly better than all the results of the other η values,
which shows the overall better performance of MaHDE with
η = 0.4.

V. CONCLUSION
This paper proposes the MaHDE algorithm to better deal
with MMOPs. Considering both fitness quality angle and
evolution stage angle, ourMaHDE not only can accelerate the
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convergence speed and preserve the found solutions around
peaks, but also can improve population diversity for locating
more peaks and to help refine the accuracy of the found good
solutions. Concretely, three novel strategies are designed to
ensure the performance of the algorithm. Firstly, the FHM
strategy considers that the different levels individual should
play a different role to balance the exploration and exploita-
tion ability of different individuals. By designing the dif-
ferent mutation strategies for the low/high-level individuals,
it makes the low-level individuals move towards the nearest
peak by the guidance of the best individual in the current
niche. Besides, it makes the high-level individuals main-
tain their superiority by the autonomous guidance strategy.
Secondly, the DGS strategy is designed for the low-level
individuals in the late evolution stage, which can improve
the population diversity and provide the new opportunity
of re-search the global peaks for the low-level individuals.
Thirdly, the ELS strategy is designed for the high-level indi-
viduals, which borrows a narrow sampling space of Gaussian
distribution to refine the accuracy of solutions in the late
evolution stage. Based on these novel strategies, MaHDE
can achieve a promising performance when comparing with
some state-of-the-art multimodal algorithms and two winners
of the CEC competitions in different accuracy levels. The
experimental results can show the superiority of the proposed
MaHDE when dealing with MMOPs.

Although MaHDE shows promising performance in deal-
ing with MMOPs, it still has some limitations. For example,
its performance on some high-dimensional problems is still
not good enough. In the future, we will extend the MaHDE to
solve someMMOPs in some potential real-word applications,
including resource-constrained project scheduling [56], elec-
tricity markets [57], energy resource management [58], and
optical networks [59]. For example, how to detect multiple
equilibriums simultaneously is a key challenging economic
game problem in electricity markets, and our MaHDE algo-
rithm can be used to solve these problems.Meanwhile, we can
also further improve the performance of MaHDE in the high
dimensional problems.
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