1,131 research outputs found

    Editorial

    Get PDF
    calls & calendarEDITORIA

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-HĂŒbner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro PezzĂ©, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Progress in Artificial Economics

    Get PDF
    Artificial economics aims to provide a generative approach to understanding problems in economics and social sciences. It is based on the consistent use of agent-based models and computational techniques. It encompasses a rich variety of techniques that generalize numerical analysis, mathematical programming, and micro-simulations. The peer-reviewed contributions in this volume address applications of artificial economics to markets and trading, auctions, networks, management, industry sectors, macroeconomics, and demographics and culture

    A prescription of methodological guidelines for comparing bio-inspired optimization algorithms

    Get PDF
    Bio-inspired optimization (including Evolutionary Computation and Swarm Intelligence) is a growing research topic with many competitive bio-inspired algorithms being proposed every year. In such an active area, preparing a successful proposal of a new bio-inspired algorithm is not an easy task. Given the maturity of this research field, proposing a new optimization technique with innovative elements is no longer enough. Apart from the novelty, results reported by the authors should be proven to achieve a significant advance over previous outcomes from the state of the art. Unfortunately, not all new proposals deal with this requirement properly. Some of them fail to select appropriate benchmarks or reference algorithms to compare with. In other cases, the validation process carried out is not defined in a principled way (or is even not done at all). Consequently, the significance of the results presented in such studies cannot be guaranteed. In this work we review several recommendations in the literature and propose methodological guidelines to prepare a successful proposal, taking all these issues into account. We expect these guidelines to be useful not only for authors, but also for reviewers and editors along their assessment of new contributions to the field.This work was supported by grants from the Spanish Ministry of Science (TIN2016-8113-R, TIN2017-89517-P and TIN2017-83132-C2- 2-R) and Universidad Politécnica de Madrid (PINV-18-XEOGHQ-19- 4QTEBP). Eneko Osaba and Javier Del Ser-would also like to thank the Basque Government for its funding support through the ELKARTEK and EMAITEK programs. Javier Del Ser-receives funding support from the Consolidated Research Group MATHMODE (IT1294-19) granted by the Department of Education of the Basque Government

    Modeling Fault Propagation Paths in Power Systems: A New Framework Based on Event SNP Systems With Neurotransmitter Concentration

    Get PDF
    To reveal fault propagation paths is one of the most critical studies for the analysis of power system security; however, it is rather dif cult. This paper proposes a new framework for the fault propagation path modeling method of power systems based on membrane computing.We rst model the fault propagation paths by proposing the event spiking neural P systems (Ev-SNP systems) with neurotransmitter concentration, which can intuitively reveal the fault propagation path due to the ability of its graphics models and parallel knowledge reasoning. The neurotransmitter concentration is used to represent the probability and gravity degree of fault propagation among synapses. Then, to reduce the dimension of the Ev-SNP system and make them suitable for large-scale power systems, we propose a model reduction method for the Ev-SNP system and devise its simpli ed model by constructing single-input and single-output neurons, called reduction-SNP system (RSNP system). Moreover, we apply the RSNP system to the IEEE 14- and 118-bus systems to study their fault propagation paths. The proposed approach rst extends the SNP systems to a large-scaled application in critical infrastructures from a single element to a system-wise investigation as well as from the post-ante fault diagnosis to a new ex-ante fault propagation path prediction, and the simulation results show a new success and promising approach to the engineering domain

    Comprehensive Taxonomies of Nature- and Bio-inspired Optimization: Inspiration versus Algorithmic Behavior, Critical Analysis and Recommendations

    Full text link
    In recent years, a great variety of nature- and bio-inspired algorithms has been reported in the literature. This algorithmic family simulates different biological processes observed in Nature in order to efficiently address complex optimization problems. In the last years the number of bio-inspired optimization approaches in literature has grown considerably, reaching unprecedented levels that dark the future prospects of this field of research. This paper addresses this problem by proposing two comprehensive, principle-based taxonomies that allow researchers to organize existing and future algorithmic developments into well-defined categories, considering two different criteria: the source of inspiration and the behavior of each algorithm. Using these taxonomies we review more than three hundred publications dealing with nature-inspired and bio-inspired algorithms, and proposals falling within each of these categories are examined, leading to a critical summary of design trends and similarities between them, and the identification of the most similar classical algorithm for each reviewed paper. From our analysis we conclude that a poor relationship is often found between the natural inspiration of an algorithm and its behavior. Furthermore, similarities in terms of behavior between different algorithms are greater than what is claimed in their public disclosure: specifically, we show that more than one-third of the reviewed bio-inspired solvers are versions of classical algorithms. Grounded on the conclusions of our critical analysis, we give several recommendations and points of improvement for better methodological practices in this active and growing research field.Comment: 76 pages, 6 figure

    Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

    Get PDF
    Nature-inspired algorithms have a great popularity in the current scientific community, being the focused scope of many research contributions in the literature year by year. The rationale behind the acquired momentum by this broad family of methods lies on their outstanding performance evinced in hundreds of research fields and problem instances. This book gravitates on the development of nature-inspired methods and their application to stochastic, dynamic and robust optimization. Topics covered by this book include the design and development of evolutionary algorithms, bio-inspired metaheuristics, or memetic methods, with empirical, innovative findings when used in different subfields of mathematical optimization, such as stochastic, dynamic, multimodal and robust optimization, as well as noisy optimization and dynamic and constraint satisfaction problems

    A critical analysis of mobility management related issues of wireless sensor networks in cyber physical systems

    Get PDF
    Mobility management has been a long-standing issue in mobile wireless sensor networks and especially in the context of cyber physical systems; its implications are immense. This paper presents a critical analysis of the current approaches to mobility management by evaluating them against a set of criteria which are essentially inherent characteristics of such systems on which these approaches are expected to provide acceptable performance. We summarize these characteristics by using a quadruple set of metrics. Additionally, using this set we classify the various approaches to mobility management that are discussed in this paper. Finally, the paper concludes by reviewing the main findings and providing suggestions that will be helpful to guide future research efforts in the area
    • 

    corecore