To reveal fault propagation paths is one of the most critical studies for the analysis of
power system security; however, it is rather dif cult. This paper proposes a new framework for the fault
propagation path modeling method of power systems based on membrane computing.We rst model the fault
propagation paths by proposing the event spiking neural P systems (Ev-SNP systems) with neurotransmitter
concentration, which can intuitively reveal the fault propagation path due to the ability of its graphics models
and parallel knowledge reasoning. The neurotransmitter concentration is used to represent the probability
and gravity degree of fault propagation among synapses. Then, to reduce the dimension of the Ev-SNP
system and make them suitable for large-scale power systems, we propose a model reduction method
for the Ev-SNP system and devise its simpli ed model by constructing single-input and single-output
neurons, called reduction-SNP system (RSNP system). Moreover, we apply the RSNP system to the IEEE
14- and 118-bus systems to study their fault propagation paths. The proposed approach rst extends the
SNP systems to a large-scaled application in critical infrastructures from a single element to a system-wise
investigation as well as from the post-ante fault diagnosis to a new ex-ante fault propagation path prediction,
and the simulation results show a new success and promising approach to the engineering domain