5,262 research outputs found

    Quality-based Multimodal Classification Using Tree-Structured Sparsity

    Full text link
    Recent studies have demonstrated advantages of information fusion based on sparsity models for multimodal classification. Among several sparsity models, tree-structured sparsity provides a flexible framework for extraction of cross-correlated information from different sources and for enforcing group sparsity at multiple granularities. However, the existing algorithm only solves an approximated version of the cost functional and the resulting solution is not necessarily sparse at group levels. This paper reformulates the tree-structured sparse model for multimodal classification task. An accelerated proximal algorithm is proposed to solve the optimization problem, which is an efficient tool for feature-level fusion among either homogeneous or heterogeneous sources of information. In addition, a (fuzzy-set-theoretic) possibilistic scheme is proposed to weight the available modalities, based on their respective reliability, in a joint optimization problem for finding the sparsity codes. This approach provides a general framework for quality-based fusion that offers added robustness to several sparsity-based multimodal classification algorithms. To demonstrate their efficacy, the proposed methods are evaluated on three different applications - multiview face recognition, multimodal face recognition, and target classification.Comment: To Appear in 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2014

    Clustering analysis of railway driving missions with niching

    Get PDF
    A wide number of applications requires classifying or grouping data into a set of categories or clusters. Most popular clustering techniques to achieve this objective are K-means clustering and hierarchical clustering. However, both of these methods necessitate the a priori setting of the cluster number. In this paper, a clustering method based on the use of a niching genetic algorithm is presented, with the aim of finding the best compromise between the inter-cluster distance maximization and the intra-cluster distance minimization. This method is applied to three clustering benchmarks and to the classification of driving missions for railway applications

    An exploration of evolutionary computation applied to frequency modulation audio synthesis parameter optimisation

    Get PDF
    With the ever-increasing complexity of sound synthesisers, there is a growing demand for automated parameter estimation and sound space navigation techniques. This thesis explores the potential for evolutionary computation to automatically map known sound qualities onto the parameters of frequency modulation synthesis. Within this exploration are original contributions in the domain of synthesis parameter estimation and, within the developed system, evolutionary computation, in the form of the evolutionary algorithms that drive the underlying optimisation process. Based upon the requirement for the parameter estimation system to deliver multiple search space solutions, existing evolutionary algorithmic architectures are augmented to enable niching, while maintaining the strengths of the original algorithms. Two novel evolutionary algorithms are proposed in which cluster analysis is used to identify and maintain species within the evolving populations. A conventional evolution strategy and cooperative coevolution strategy are defined, with cluster-orientated operators that enable the simultaneous optimisation of multiple search space solutions at distinct optima. A test methodology is developed that enables components of the synthesis matching problem to be identified and isolated, enabling the performance of different optimisation techniques to be compared quantitatively. A system is consequently developed that evolves sound matches using conventional frequency modulation synthesis models, and the effectiveness of different evolutionary algorithms is assessed and compared in application to both static and timevarying sound matching problems. Performance of the system is then evaluated by interview with expert listeners. The thesis is closed with a reflection on the algorithms and systems which have been developed, discussing possibilities for the future of automated synthesis parameter estimation techniques, and how they might be employed

    Fitness Proportionate Niching: Harnessing The Power Of Evolutionary Algorithms For Evolving Cooperative Populations And Dynamic Clustering

    Get PDF
    Evolutionary algorithms work on the notion of best fit will survive criteria. This makes evolving a cooperative and diverse population in a competing environment via evolutionary algorithms a challenging task. Analogies to species interactions in natural ecological systems have been used to develop methods for maintaining diversity in a population. One such area that mimics species interactions in natural systems is the use of niching. Niching methods extend the application of EAs to areas that seeks to embrace multiple solutions to a given problem. The conventional fitness sharing technique has limitations when the multimodal fitness landscape has unequal peaks. Higher peaks are strong population attractors. And this technique suffers from the curse of population size in attempting to discover all optimum points. The use of high population size makes the technique computationally complex, especially when there is a big jump in fitness values of the peaks. This work introduces a novel bio-inspired niching technique, termed Fitness Proportionate Niching (FPN), based on the analogy of finite resource model where individuals share the resource of a niche in proportion to their actual fitness. FPN makes the search algorithm unbiased to the variation in fitness values of the peaks and hence mitigates the drawbacks of conventional fitness sharing. FPN extends the global search ability of Genetic Algorithms (GAs) for evolving hierarchical cooperation in genetics-based machine learning and dynamic clustering. To this end, this work introduces FPN based resource sharing which leads to the formation of a viable default hierarchy in classifiers for the first time. It results in the co-evolution of default and exception rules, which lead to a robust and concise model description. The work also explores the feasibility and success of FPN for dynamic clustering. Unlike most other clustering techniques, FPN based clustering does not require any a priori information on the distribution of the data

    Seeking multiple solutions:an updated survey on niching methods and their applications

    Get PDF
    Multi-Modal Optimization (MMO) aiming to locate multiple optimal (or near-optimal) solutions in a single simulation run has practical relevance to problem solving across many fields. Population-based meta-heuristics have been shown particularly effective in solving MMO problems, if equipped with specificallydesigned diversity-preserving mechanisms, commonly known as niching methods. This paper provides an updated survey on niching methods. The paper first revisits the fundamental concepts about niching and its most representative schemes, then reviews the most recent development of niching methods, including novel and hybrid methods, performance measures, and benchmarks for their assessment. Furthermore, the paper surveys previous attempts at leveraging the capabilities of niching to facilitate various optimization tasks (e.g., multi-objective and dynamic optimization) and machine learning tasks (e.g., clustering, feature selection, and learning ensembles). A list of successful applications of niching methods to real-world problems is presented to demonstrate the capabilities of niching methods in providing solutions that are difficult for other optimization methods to offer. The significant practical value of niching methods is clearly exemplified through these applications. Finally, the paper poses challenges and research questions on niching that are yet to be appropriately addressed. Providing answers to these questions is crucial before we can bring more fruitful benefits of niching to real-world problem solving

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques

    Bio-inspired computation: where we stand and what's next

    Get PDF
    In recent years, the research community has witnessed an explosion of literature dealing with the adaptation of behavioral patterns and social phenomena observed in nature towards efficiently solving complex computational tasks. This trend has been especially dramatic in what relates to optimization problems, mainly due to the unprecedented complexity of problem instances, arising from a diverse spectrum of domains such as transportation, logistics, energy, climate, social networks, health and industry 4.0, among many others. Notwithstanding this upsurge of activity, research in this vibrant topic should be steered towards certain areas that, despite their eventual value and impact on the field of bio-inspired computation, still remain insufficiently explored to date. The main purpose of this paper is to outline the state of the art and to identify open challenges concerning the most relevant areas within bio-inspired optimization. An analysis and discussion are also carried out over the general trajectory followed in recent years by the community working in this field, thereby highlighting the need for reaching a consensus and joining forces towards achieving valuable insights into the understanding of this family of optimization techniques
    • 

    corecore