
North Carolina Agricultural and Technical State University North Carolina Agricultural and Technical State University

Aggie Digital Collections and Scholarship Aggie Digital Collections and Scholarship

Dissertations Electronic Theses and Dissertations

2013

Fitness Proportionate Niching: Harnessing The Power Of Fitness Proportionate Niching: Harnessing The Power Of

Evolutionary Algorithms For Evolving Cooperative Populations Evolutionary Algorithms For Evolving Cooperative Populations

And Dynamic Clustering And Dynamic Clustering

Abrham Tibebu Workineh
North Carolina Agricultural and Technical State University

Follow this and additional works at: https://digital.library.ncat.edu/dissertations

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
Workineh, Abrham Tibebu, "Fitness Proportionate Niching: Harnessing The Power Of Evolutionary
Algorithms For Evolving Cooperative Populations And Dynamic Clustering" (2013). Dissertations. 120.
https://digital.library.ncat.edu/dissertations/120

This Dissertation is brought to you for free and open access by the Electronic Theses and Dissertations at Aggie
Digital Collections and Scholarship. It has been accepted for inclusion in Dissertations by an authorized
administrator of Aggie Digital Collections and Scholarship. For more information, please contact iyanna@ncat.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by North Carolina Agricultural and Technical State University: NC A&T SU Bluford Library's...

https://core.ac.uk/display/322523736?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digital.library.ncat.edu/
https://digital.library.ncat.edu/dissertations
https://digital.library.ncat.edu/etds
https://digital.library.ncat.edu/dissertations?utm_source=digital.library.ncat.edu%2Fdissertations%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digital.library.ncat.edu%2Fdissertations%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digital.library.ncat.edu/dissertations/120?utm_source=digital.library.ncat.edu%2Fdissertations%2F120&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:iyanna@ncat.edu

Fitness Proportionate Niching: Harnessing the Power of Evolutionary Algorithms for Evolving

Cooperative Populations and Dynamic Clustering

Abrham Tibebu Workineh

North Carolina A&T State University

A dissertation submitted to the graduate faculty

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Department: Electrical and Computer Engineering

Major: Electrical Engineering

Major Professor: Dr. Abdollah Homaifar

Greensboro, North Carolina

2013

i

School of Graduate Studies

North Carolina Agricultural and Technical State University

This is to certify that the Doctoral Dissertation of

Abrham Tibebu Workineh

has met the dissertation requirements of

North Carolina Agricultural and Technical State University

Greensboro, North Carolina

2013

Approved by:

Dr. Abdollah Homaifar

Major Professor

Dr. Gary Lebby

Committee Member

Dr. Albert Esterline

Committee Member

Dr. Sanjiv Sarin

Dean, The Graduate School

Dr. Robert Li

Committee Member

Dr. Jung Kim

Committee Member

Dr. John Kelly

Department Chair

ii

© Copyright by

Abrham Tibebu Workineh

2013

iii

Biographical Sketch

 Abrham Tibebu Workineh was born in 1982 in Amarasayint, South Wollo,

Ethiopia. He received his bachelor’s degree in Computer Engineering from Addis Ababa

University (Ethiopia) in 2006 with Great Distinction and his master’s degree in Electrical

Engineering from North Carolina A & T State University in 2010, with Highest Honor.

iv

Dedication

This dissertation is dedicated to my late grandmother, Kelem Atrsaw, to whom I am

deeply indebted to her unceasing love and care and attribute to her most of my educational

success and personal values. I wish you lived long enough to see this but your love will remain

in my heart forever. I love you and rest in peace.

v

Acknowledgements

First and foremost, my heartfelt gratitude goes to Almighty God for He gave me the

wisdom, passion and stamina throughout my work.

I am very thankful to my advisor, Dr. Abdollah Homaifar, for his invaluable technical

and professional guidance in the entirety of this work. He has been a constant source of insight

and guidance on most of the ideas in this work. His longtime curiosity on whether a default

hierarchy is realizable in a competing environment channeled my interest in Evolutionary

Algorithms into a productive research. I also express my sincere acknowledgement to all my

committee members (Dr. Albert Esterline, Dr. Gary Lebby, Dr. Jung Kim and Dr. Robert Li) and

graduate school outside observer (Dr. Scott Harrison) for their valuable critics and suggestions

on the research approach and editing of this dissertation.

I am so grateful to my families for their great help, love and encouragement. My

roommates and friends in Greensboro: you made my life simple, enjoyable and memorable;

thanks for the togetherness, comfort and support throughout. I am particularly indebted to Ms.

Sara Asfaw for her immeasurable help, motivation and comfort in many ways. I cannot thank her

enough. And last, but not least, I would like to extend my appreciation to friends in the lab,

whole ECE staff members and several other people around campus without whose support this

work would have remained a dream.

Finally, completing this research would have been unthinkable without the generous

support of the National Science Foundation (NSF) under Cooperative Agreement No. DBI-

0939454. I am so much indebted to the US government for funding this research throughout my

PhD program. Any opinions, findings, and conclusions or recommendations expressed in this

material are, however, those of mine and do not necessarily reflect the views of NSF.

vi

Table of Contents

List of Figures ... x

List of Tables ... xiii

Abstract ... 2

CHAPTER 1 Introduction... 3

1.1 Motivation ... 4

1.2 Problem Description .. 5

1.3 Contribution .. 8

1.4 Dissertation Scope ... 10

1.5 Dissertation Outline... 11

CHAPTER 2 Literature Review ... 13

2.1 Global Optimization Issues ... 14

2.2 Niching Methods for Evolutionary Algorithms .. 16

2.1.1 Fitness sharing. .. 17

2.1.2 Crowding. .. 19

2.1.3 Clearing. .. 20

2.3 The Niche Radius Problem ... 20

2.4 Evolving Hierarchical Cooperation in Classifiers ... 24

2.4.1 LCS overview. ... 24

2.4.2. Default hierarchy. ... 28

2.4.2.1 The starvation–protection dilemma. .. 29

vii

2.4.2.2 Extending decision making to the match set.. 30

2.4.2.3 The need for niching. ... 31

CHAPTER 3 Fitness Proportionate Niching (FPN) ... 34

3.1 Test Functions ... 35

3.2 Mathematical Formulation .. 37

3.3 Complexity Analysis ... 40

3.4 Performance Criteria ... 42

3.5 Ecological Analogy ... 43

3.6 Dynamic Niche Identification with Niche Expansion (DNINE) .. 45

3.7. Chi-square like Distribution ... 49

CHAPTER 4 Evolving Hierarchical Cooperation in Classifiers .. 52

4.1 Hierarchy in LCS .. 53

4.2 System Formulation .. 57

4.2.1 Classifier format. ... 57

4.2.2 Learning system. ... 58

4.2.2.1 Auction. .. 58

4.2.2.2 Fitness Proportionate Resource Sharing (FPRS). .. 59

4.2.2.3 Clearing House (CH). .. 59

4.2.2.4 Genetic Algorithm (GA). ... 60

4.3 Learning Cycle .. 62

viii

4.4 Steady State Analysis .. 62

4.4.1 Default classifier. ... 64

4.4.2 Exception classifiers. ... 66

CHAPTER 5 FPN for Dynamic Clustering .. 69

5.1 Mapping Multi-modal Optimization to Cluster Discovery ... 70

5.2 Formulation of Fitness Function ... 72

5.2.1 Crossover operator. ... 73

5.2.2 Mutation operator. ... 73

5.3. Algorithmic Description ... 74

5.4. Simulation Results.. 76

CHAPTER 6 Results and Discussion ... 80

6.1. Results for FPN .. 80

6.2. Results for LCS .. 85

6.2.1 Performance evaluation. .. 86

6.2.2 Scalability and robustness. .. 92

6.2.3 Control experiments. ... 99

6.2.4 Theoretical prediction vs. simulation results. .. 103

CHAPTER 7 Conclusion and Future Work .. 106

7.1. Summary .. 106

7.2. Future Work ... 109

ix

7.2.1 Multi-label classification. .. 109

7.2.2 Extension to real-valued LCS. ... 110

7.2.3 More clustering applications. .. 111

7.2.4 Evolution dynamics. .. 111

References ... 112

Appendix A ... 121

Appendix B ... 123

x

List of Figures

Figure 1.1. Mapping multimodal fitness landscape to clustering. .. 6

Figure 2.1. A unimodal objective function with a smooth path to the global optimum. 15

Figure 2.2. A multi-modal objective function with 4 unequal peaks.. 16

Figure 2.3. The structure of a learning classifier system. ... 27

Figure 3.1. Fa(x)-a multimodal function with 5 equal peaks. ... 35

Figure 3.2. Fb(x)-a multimodal function with 5 unequal peaks. ... 35

Figure 3.3. Fc(x)-a function with 5 unequal peaks with high fitness variation. 36

Figure 3.4. Fd(x)-a multimodal function with unevenly distributed peaks. 36

Figure 3.5. Fe(x)-Shekel's foxhole function. ... 37

Figure 3.6. Ecological analogy for a multimodal fitness landscape. .. 45

Figure 3.7. Niche distribution for a multimodal fitness landscape. .. 48

Figure 3.8. Effect of noise on niche migration. .. 49

Figure 3.9. Chi-square like deviation for Fa(x). ... 50

Figure 3.10. Chi-square like deviation for Fc(x). ... 51

Figure 4.1. A hierarchical rule structure. .. 54

Figure 4.2. Hierarchical and non-hierarchical solution set for 6-multiplexer problem. 55

Figure 4.3. Hierarchical and non-hierarchical solution set for 11-mux problem. 56

Figure 4.4. Classifier format. .. 57

Figure 4.5. A Block diagram of an LCS in learning mode. .. 61

Figure 5.1. Mapping of a multimodal optimization problem to a clustering problem in 1-D. 71

Figure 5.2. Mapping a 2-D multimodal function in to a clustering problem in 2-D. 71

Figure 5.3. The distribution of the population at the start and end of evolution. 75

xi

Figure 5.4. Synthetic data with well separated clusters. ... 77

Figure 5.5. A synthetic data with less dense clusters. ... 78

Figure 5.6. The average number of clusters discovered using FPN for the five data sets. 79

Figure 5.7. The standard error plot for two synthetic and three real datasets. 79

Figure 6.1. Number of peaks discovered for Fa(x) out of a total of 5 peaks. 81

Figure 6.2. Number of peaks discovered for Fb(x) out of a total of 5 peaks................................. 82

Figure 6.3. Number of peaks discovered for Fc(x), out of a total of 5 peaks. 82

Figure 6.4. Number of peaks discovered for Fd(x), out of a total of 10 peaks.............................. 83

Figure 6.5. Number of peaks discovered for Fe(x), out of a total of 25 peaks. 84

Figure 6.6. System performance for the 6-multiplexer problem. ... 87

Figure 6.7. The average bid amount of winner classifiers at each epoch for 6-mux. 88

Figure 6.8. Subpopulation distribution for 6-mux using a FPRS scheme. 91

Figure 6.9. System performance for the 11-mux using FPRS scheme. .. 93

Figure 6.10. The average bid amount of winner classifiers at each epoch for 11-mux. 93

Figure 6.11. Subpopulation distribution for 11-mux using FPRS scheme. 94

Figure 6.12. The system performance (in percentage accuracy) for 20-mux problem. 97

Figure 6.13. The average bid amount of winner classifiers at each epoch for 20-mux. 97

Figure 6.14. Subpopulation distribution for 20-mux using FPRS scheme. 98

Figure 6.15. Result for 6-mux with uniform and no sharing schemes. 101

Figure 6.16. Result for 11-mux with uniform and no sharing schemes. 102

Figure 6.17. A result to check whether a default hierarchy can be sustained under other sharing

schemes for 6-mux .. 104

xii

Figure 6.18. Simulations to check whether a default hierarchy can be sustained using other

sharing schemes for 11-mux. .. 105

xiii

List of Tables

Table 4.1 Simulation parameters with their optimum values ... 68

Table 6.1 Population distribution at the five different peaks for Fb(x) ... 84

Table 6.2 Population distribution at the five different peaks for Fc(x) .. 85

Table 6.3 A sample pattern of the final population for 6-mux with default of action of 0 89

Table 6.4 A sample pattern of the final population for 6-mux with default of action of 1 90

Table 6.5 A sample pattern of the final population for 11-mux with default action of 0 95

Table 6.6 A sample pattern of the final population for 11-mux with default action of 1 96

Table 6.7 A sample pattern of the final population for 20-mux with default action of 1 100

2

Abstract

Evolutionary algorithms work on the notion of “best fit will survive” criteria. This makes

evolving a cooperative and diverse population in a competing environment via evolutionary

algorithms a challenging task. Analogies to species interactions in natural ecological systems

have been used to develop methods for maintaining diversity in a population. One such area that

mimics species interactions in natural systems is the use of niching. Niching methods extend the

application of EAs to areas that seeks to embrace multiple solutions to a given problem.

The conventional fitness sharing technique has limitations when the multimodal fitness

landscape has unequal peaks. Higher peaks are strong population attractors. And this technique

suffers from the ‘curse of population size’ in attempting to discover all optimum points. The use

of high population size makes the technique computationally complex, especially when there is a

big jump in fitness values of the peaks. This work introduces a novel bio-inspired niching

technique, termed Fitness Proportionate Niching (FPN), based on the analogy of finite resource

model where individuals share the resource of a niche in proportion to their actual fitness. FPN

makes the search algorithm unbiased to the variation in fitness values of the peaks and hence

mitigates the drawbacks of conventional fitness sharing. FPN extends the global search ability of

Genetic Algorithms (GAs) for evolving hierarchical cooperation in genetics-based machine

learning and dynamic clustering. To this end, this work introduces FPN based resource sharing

which leads to the formation of a viable default hierarchy in classifiers for the first time. It results

in the co-evolution of default and exception rules, which lead to a robust and concise model

description. The work also explores the feasibility and success of FPN for dynamic clustering.

Unlike most other clustering techniques, FPN based clustering does not require any a priori

information on the distribution of the data.

3

CHAPTER 1

Introduction

All living things have some degree of inherent intelligence and strive to adapt to

situations through ongoing learning. We learn heuristics throughout our life and use them to

solve various problems in day-to-day life. But machines have no intuition and hence fail to

understand commonsense knowledge. One of the most striking features of nature is the existence

of living organisms in a wide range of ecosystems adapted for surviving in a continuously

changing environment. The unguided natural evolution of living things in response to

environmental variations has attracted the attention of many researchers pursuing the

development of computer systems with analogous features. Learning from nature has been the

key aspect of Evolutionary Algorithms (EAs). Adaptation of this natural intelligence to machines

has contributed to the advancement of technology. The essence of EAs is to use ideas from

natural evolution in order to find a global optimum solution to a certain problem. EAs are

population-based robust metaheuristic optimization algorithms that use biology-inspired

mechanisms like mutation, crossover, natural selection, and survival of the fittest in order to

refine a set of solution candidates iteratively. Evolution in living things is unguided and its goal

is usually unpredictable (Back, 1996; Back and Schwefel, 1993). EAs introduce a change in

semantics of natural evolution being goal driven. Compared to other optimization techniques,

EAs have an advantage of being a “black-box” (i.e. making only few assumptions about the

underlying objective function) approach to modeling a problem. The objective function does not

require a deep knowledge of the structure of the problem space. This enables EAs to perform

consistently well in a variety of problem categories (Weise, 2008, Floudas and Pardalos, 1996).

In addition, unlike many other optimization techniques which suffer from the problem of

4

premature convergence to a local optima, EAs have a mechanism to avoid getting trapped in a

local optima through discovery of new candidate solutions in the search space outside of the

locally optimal regions by using a mutation operator (Floudas and Pardalos, 1996; Pardalos and

Romeijn, 2002). The mutation operator is a means that enables EAs to get out of local optima.

1.1 Motivation

This work has been part of a large project funded by the National Science Foundation

BEACON Center, which aims on harnessing the power of biological evolution to engineer better

solutions to real problems. With the increasing complexity of real-world optimization problems,

demand for robust, fast, and accurate optimizers in a wide variety of multi-dimensional,

multiobjective and multimodal optimization problems is on the rise among researchers in various

fields. In this era of huge amounts of digital data, efficient and robust computational methods are

of utmost importance for knowledge discovery and information retrieval, which involves

techniques for clustering, classification and analysis of dynamic data.

In most real scenarios, the working environment is dynamic and known only partially. In

addition, the solution space to some problems is usually huge and an exhaustive search for

finding the best of the many possible candidates might not be feasible cost and time-wise. This

makes designing an accurate mathematical model for optimal solutions a very daunting task,

especially when the learning system needs to model an environment with huge number of states

(Lanzi and Riolo, 2000, Riolo, 1987). Building a model that adapts to a dynamic environment

through ongoing learning is a major contemporary challenge. Evolutionary algorithms are

population based search heuristics that address this. Interspecies interactions through

recombination and mutation allow the population to rapidly identify regions of the fitness

landscape with high fitness and hence locate a satisfactory solution to a given problem without

5

being trapped in local optima (Lee et al., 1999). Like any other meta-heuristics search technique,

EAs cannot guarantee the global optimum solution. Instead, EAs provide an engineering solution

to a given problem. By maintaining useful diversity in a population, EAs avoid early

convergence to have sufficient exploration of the search space and locate multiple optima at the

same time (Horn and Goldberg, 1996; Shir and Back, 2006).

1.2 Problem Description

This research has primarily focused on addressing key challenges in two related areas of

machine learning: multimodal function optimization and classification. The conventional fitness

sharing technique enables a Genetic Algorithm (GA) to discover multiple optima simultaneously

by maintaining a useful diversity in a population. It is based on an ecological analogy of a finite

resource model, where individuals in a given niche share the resource of that niche. Peaks of the

multimodal fitness landscape represent the resource of a particular niche. In a multimodal fitness

landscape, the traditional fitness sharing scheme tends to distribute the population along the

various peaks in proportion to the fitness of each niche. Higher peaks in the fitness landscape are

strong population attractors and hence a significant proportion of the population rushes to

converge to those points. On the other hand, lower peaks remain as weaker attractors until the

resource of higher peaks gets depleted and other individuals in the population will no longer

have an incentive to migrate to those niche locations. The problem with this kind of sharing is

that as higher peaks in the fitness landscape attract the majority of the population, the search

technique is unable to discover other peaks of lower fitness value. In other words, if there is a

large gap between the peaks of the multimodal fitness landscape, the EA typically requires a

large population size in order to discover all the optimum points effectively. This makes the

success of the search technique highly dependent on population size. Intuitively, the larger the

6

population size, the slower is the search process as the EA requires more computation time for

convergence. Multimodal functions can also be mapped to represent the density of data for

clustering: dense areas map to higher peaks and sparse areas to the location of lower peaks (see

Figure 1.1). In such a scenario, higher peaks may not necessarily be more relevant than lower

peaks. In Figure 1.1 for instance, clusters C1 and C5 are equally important from the point of view

of categorizing the data in to appropriate number of clusters. Hence, discovering both cluster

centers is equally important for the search technique. Is it possible to consider all the optima

equally attractive from the EA search point of view so that the difference in the fitness of the

highest and lowest peaks does not affect the performance of the search technique? This, if

possible, would avoid the population size dependency and hence making the search process

faster.

Figure 1.1. Mapping multimodal fitness landscape to clustering.

The second focus area of this research is classification, particularly classification using

Michigan style LCSs. LCSs are rule-based learning models guided by a reinforcement signal.

Rules are classifiers that compete for a resource to maximize their strength. The goal of the

learning system is to build a set of rules that work in coordination to accurately model a given

environment. This requires a mechanism to evolve and sustain a diverse, cooperative population

C1

C2

C4

C3

C5

7

of rules that together represent a concept or model a set of behaviors that solve a given problem.

The LCS in its very nature has a unique power of discovering cooperating rules through a GA by

the guidance of reinforcement learning. However, it would tend to lose diversity due to a strong

selection pressure of the GA. Hence, to maintain a cooperative diversity while applying a

selection operator to the population of rules, it must incorporate a mechanism to counterbalance

the effect of selection pressure. An LCS that is to work in an environment with huge numbers of

states can be modeled in either of two ways. One possible way is using a population of rules that

never make mistakes. This makes the learning system computationally complex and

unacceptable to model realistic problems due to the curse of large population size. Besides, an

environment exhibiting perpetual novelty combined with a limited sampling of it adds another

order of complexity. The other alternative is to build a hierarchical model where the task of the

learning system is to categorize the states into groups that can be treated in a similar way.

The question this research has aimed to address is: is it possible to evolve a hierarchical

set of cooperating rules in which general and specific rules coexist in a competing environment

while the specific rules provide protection to the general rules without starving them? If this is

realizable, it helps to build a concise concept description. A crude analogy from real life would

be a scenario where general practitioners and specialists work in cooperation. A general

physician can diagnose a variety of health problems that do not need a specialty. There is no

need for a specialist when the general physician is good enough. But, a general physician needs

to be covered by a specialist for special cases. So, a well optimized system is one that embraces

the co-existence of both in the system. Similarly in LCS, is it possible to protect the default

(general classifier) from making mistakes by the exception classifiers without starving it when its

action is right? The starvation-protection dilemma has been the bottleneck of the research in this

8

community for over three decades. Our research provides a solution to the challenges mentioned

above.

1.3 Contribution

This work makes two significant contributions to the field of evolutionary algorithms.

The first contribution is the development of a novel niching technique, termed Fitness

Proportionate Niching (FPN), for multimodal function optimization. FPN is a resource sharing

strategy where individuals in a given environmental niche share the resource of that niche in

proportion to their actual fitness. The niching technique developed is based on a finite resource

model. It is analogous to an ecological scenario where a different amount of resource supports

the same number of different species (for instance, a ten meters cube of water may support three

lions whereas a six meters cube of water may suffice to support the same number of dogs for the

same duration). This ecological scenario is mapped into the developed algorithm to model

resource sharing in a rugged fitness landscape. The distribution of the resource is modeled by the

fitness landscape and its amount refers to the fitness value. The species (dogs and lions in this

example) refer to subpopulations at the location of each niche. The number of niches

corresponds to the number of peaks (optimum points) of the fitness landscape. The variation in

amount of a resource (e.g. 10m
3

and 6m
3
) corresponds to peaks of different fitness value in the

fitness landscape.

The second major contribution of this work is the adaption of FPN for evolving

hierarchical cooperation in classifiers. Classification is a supervised learning where the learning

system, once sufficiently trained, seeks to categorize previously unseen instances in to correct

classes or labels. An LCS accomplishes this task by evolving a population of classifiers using a

reinforcement signal. Classifiers are rewarded every time an input is correctly classified. All

9

classes (labels) are considered equally important (i.e., a classifier which correctly classifies an

input from one class and another which correctly classifies a different input from another class

are equally rewarded by the trainer). FPN is used as a resource sharing mechanism to reinforce

classifiers that match to a given input. This effectively turns the classification problem into an

optimization problem of a multimodal function with equal peaks. Depending on the complexity

of the working environment, adequate modeling of the environment might require a huge number

of rules that collectively give a better model of the environment. Building a hierarchical set of

rules, where accurate and more specific rules respond to a subset of the situations covered by

more general but less accurate default rules is vital to achieving a compact rule set size,

especially when dealing with an environment that has huge numbers of states. This requires the

co-existence of exception and default rules in the system so that the exception rules can protect

the default rule from making mistakes without starving it. To the best of our knowledge, the

techniques proposed so far have failed to provide protection without a subsequent starvation of

the default. This work has filled the research gap in evolving hierarchical cooperation in a

diverse population of classifiers. A new formulation of steady state analysis (expressions

governing the group strength variation and subpopulation dynamics) is also part of our

contribution to the field.

Several sections of this dissertation are published in journals and peer reviewed

conferences. The most relevant publications are listed below (see the appendix for detail).

Workineh, A. & Homaifar, A. (2012). Evolving hierarchical cooperation in classifiers via fitness

proportionate niching. Journal of Complex Systems (in review).

Workineh, A. & Homaifar, A. (2011). Robust bidding in learning classifier systems using loan

and bid history. Journal of Complex Systems, Vol. 19, Issue 3, pp. 287-303.

10

Workineh, A. & Homaifar, A.(2012). Fitness proportionate reward sharing: a viable default

hierarchy formation strategy in LCS. The 2012 International Conference on Genetic and

Evolutionary Methods, Las Vegas, July 16-19.

Workineh, A. & Homaifar, A. (2012). Fitness proportionate niching: maintaining diversity in a

rugged fitness landscape. The 2012 International Conference on Genetic and

Evolutionary Methods, Las Vegas, July 16-19.

Workineh, A., & Homaifar, A. (2012). Fitness proportionate niching: A different perspective on

co-evolution of diverse population. ALife13, Michigan State University, July 19-22

(Extended Abstract).

Workineh, A., & Homaifar, A.(2012). A new bidding strategy in LCS using a decentralized

loaning and bid history. IEEE Aerospace Conference, 1-8, Big Sky, MT., March 03-12.

1.4 Dissertation Scope

The term EA is very broad and refers to a collection of global optimization heuristics that

are inspired by natural evolution in living organisms. The focus of this work, however, is limited

to the two types of EAs: Genetic Algorithms (GAs) and Learning Classifiers Systems (LCSs). In

particular, it focuses on maintaining diversity in a competing population and its applications in

evolving hierarchical cooperation in classifiers and clustering. We developed a novel niching

technique that alleviates the limitations of traditional fitness sharing. Its validity is tested and

compared with existing sharing techniques using benchmark problems used in the literatures.

This research is not directed at any specific type of application. Instead, its practical significance

for solving real problems in broad areas of application (classification, clustering and multimodal

function optimization) is demonstrated. For classification, the niching scheme is used as a

resource allocation technique in LCSs to evolve a hierarchical set of cooperating rules. It is

11

successfully applied in single label classification tasks. Though the simulations are carried out

for Boolean function learning using an LCS, the algorithm can be extended to any evolutionary

algorithm that seeks to evolve a hierarchical set of cooperating rules for a concise concept

description. Its role in dynamic clustering is also explored using both synthetic and real data. The

intent here, however, is not to compare its performance with or claim an improvement over a

specific clustering algorithm. Most clustering algorithms rely on a priori knowledge (for instance

number of clusters, the distribution of the data etc) on the data. We have demonstrated that the

developed niching technique can be applied in clustering when such a priori information is not

available in advance. This dissertation has also shown the applicability of the technique for

multimodal function optimization.

1.5 Dissertation Outline

The remainder of the dissertation is organized as follows. Chapter 2 provides an overview

of related research work with an emphasis on multimodal function optimization, niching GAs

and LCSs. Research on various niching methods and the challenge of niche radius estimation are

discussed in this chapter. A review of the state of the art on the challenges in the formation of

default hierarchies in LCSs is also given in this chapter. The main contributions of this work are

presented in chapters 3 and 4. Chapter 3 discusses the novel FPN technique. The mathematical

formulation, performance measure and its ecological analogy are detailed. A complexity analysis

by comparing it with the traditional fitness sharing technique is also provided. The methodology

for evolving hierarchical cooperation in classifiers is discussed in chapter 4. A new formulation

of the classifier format is presented and an FPN based reinforcement scheme is used to allocate a

reward among competing classifiers in the advocate set. The learning cycle and steady state

analyses for the proposed learner are also given in this chapter. In Chapter 5, we extended the

12

application of FPN for dynamic clustering. A technique based on the principle of ecological

niche expansion is applied for niche radius estimation. Then, a mapping between the number of

peaks in a multimodal function and the number of clusters in the data is made and the fitness

function is formulated. Simulation is done using both synthetic and real data. Chapter 6 discusses

the simulation results. This chapter has two parts. The first part presents the simulation results

for FPN. Comparison with existing niching techniques using well-known multimodal test

functions presented in the literatures is given. The second part discusses the results for the

evolution of hierarchical cooperation in classifiers. Comparison on whether other techniques are

able to attain a default hierarchy; and are able to sustain it under the selection pressure of the GA

is also investigated using control runs for the same simulation setup. Chapter 7 concludes the

dissertation by highlighting the contributions of the work and pinpointing directions for future

research.

13

CHAPTER 2

Literature Review

With the increasing complexity of real-world optimization problems, demand for robust,

fast, and accurate optimizers in a wide variety of multi-dimensional, multi-objective and

multimodal optimization problems is on the rise among researchers in various fields. In this era

of huge amounts of digital data, efficient and robust computational methods are of utmost

importance for knowledge discovery and information retrieval. Evolutionary algorithms (EAs)

are a form of stochastic search that utilize selection and inheritance to discover near-optimal

solutions to arbitrary problems. Evolution in artificial systems follows the same basic principles

as those of natural populations. Each individual possesses a coded solution to a given problem;

the genotype. The genotype is decoded into a phenotype, which is a description of an

individual’s response to a given problem.

In this chapter, a detailed review of the current state of the art on niching methods for

EAs is provided. We will review related research work and highlight some of the bottlenecks in

this area that previous research has not addressed. The chapter is organized into four sections.

The first section will explore the research in multimodal function optimization. The use of

niching for maintaining diversity in a population for discovering multiple peaks in a multi-modal

fitness landscape will be detailed in the second section. A brief summary of the various niching

techniques is given in this section. The third section summarizes previous research work on

estimating the niche radius. The idea of a finite resource model where individuals with in a given

niche radius share the resource of that niche is analogous to implicit sharing in classifier systems.

The fourth section discusses the evolution of hierarchical cooperation in classifiers. Applications

of the niching technique for clustering and the related issues are discussed in the last section.

14

2.1 Global Optimization Issues

Unlike gradient based search techniques, which can be trapped in local optima, EAs are

population-based global optimizers with a mechanism (using a mutation operator) to escape local

optima. However, there is no guarantee of discovering the global optima every time. The chance

of discovering the global optima depends on several factors, including the initial population

setup, the type of fitness landscape (multimodality, ruggedness, deceptiveness etc) and the

degree of exploitation and exploration. In population based search algorithms (Genetic

algorithms (GAs), tabu search, genetic programming (GP), and particle swarm optimization

(PSO)), premature convergence has been a common issue. It arises due to loss of diversity in a

population which is related to maintaining a good balance between exploitation and exploration.

Losing diversity means approaching a state where all the solution candidates look similar.

Exploration is discovery of new solutions from the search space. These solutions introduce

diversity to the solution list enabling the search algorithm to get out of trap in local minima and

hence, allowing the algorithm to discover better solutions. The mutation operator in GAs helps to

discover new solutions by providing a mechanism to get out of local optima. On the other hand,

exploitation improves currently known solutions by combining individuals. The cross over

operator speeds up convergence by refining previously discovered solutions in the population. A

balance between exploration and exploitation is very essential in population based search

algorithms. Too much exploration (i.e. high mutation rate) destroys good solutions and would

turn the search technique to a blind search. This delays convergence to optimum points in the

search space. Also, too much exploitation (i.e. high crossover rate) leads to premature

convergence and ignoring possibly better solutions located at distant areas of the problem space

which have not been explored. Higher exploitation rate means higher convergence rate and

15

accepting the risk of not finding the optimal solution (as the search may get stuck at a local

optimum).

EAs are applicable to a wide range of problems with varied fitness landscapes. Simple

EAs are effective in finding a single optimum of a unimodal fitness landscape (Jong, 1975). For

instance in Figure 2.1, the function has one global optimum and the path to the optimum point is

smooth. A more difficult problem arises when the function to be optimized is multimodal (see

Figure 2.2) and has many local optima.

Figure 2.1. A unimodal objective function with a smooth path to the global optimum.

The optima in a multimodal fitness landscape may have different peaks unevenly

distributed throughout the search space. EAs have an intrinsic drawback when dealing with such

multimodal fitness landscapes to locate all optima simultaneously. This is due in part to the

genetic drift (Asoh and Muhlenbein, 1994; Cioppa et al., 2007) that results from the selection

pressure of a GA, operator disruption and selection noise and that drives the population to

converge to the highest fitness. The drawback is also due to the evaluation mechanism, which

computes the fitness of each individual in the population independent of the fitness of other

individuals (Cioppa et al., 2004, 2007). So, to deal with multimodal fitness landscapes, EAs need

x

F(x)

16

to have a mechanism to maintain a diverse population by counterbalancing the effect of genetic

drift.

Figure 2.2. A multi-modal objective function with 4 unequal peaks.

There is no general solution to premature convergence but possible solutions have been

suggested in the literatures. The most popular include, restarting the process with a randomly

initialized state, increasing the exploration rate (higher mutation rate for instance) and extending

the duration of evolution by steering the search away from the already sampled or frequently

visited areas using techniques like niching and implicit fitness sharing. The principle behind

most of the existing diversity maintaining mechanisms is based on an analogy with natural

ecosystems, which encourages the formation of species or niches, each representing candidate

solutions (Forrest et al., 1993; Goldberg and Richardson, 1987; R. Smith et al., 1993).

2.2 Niching Methods for Evolutionary Algorithms

The motivation behind niching was to promote diversity in a population. Traditional GAs

evolve the whole population towards convergence, i.e. individuals in the population soon

become nearly identical. In other words, they suffer from early convergence and in the case of

multimodal functions; GAs can only find one of the solutions. Hence effective implementation of

F(x)

x

17

niching is very crucial to the success of GAs in multimodal function and multi-objective

optimization, machine learning and classification problems. Maintaining diversity in a

population has two major advantages. First, it helps to avoid premature convergence and hence

allowing sufficient exploration of the search space. The most important advantage of keeping

diversity in a population is to discover multiple optima in multimodal function optimization. So

far there are two major approaches to niching: preventing premature convergence by altering the

selection operators in the GA and the multi-population strategy. Fitness sharing (Goldberg, 1989;

Goldberg and Richardson, 1987), crowding (Jong, 1975), deterministic crowding (Mahfoud,

1995) and clearing (Petrowski, 1996) techniques fall under the first category. The second

approach includes multi-population GAs, island population models and forking where the

algorithms subdivide the population into subpopulations and optimize locally. The need for

maintaining useful diversity in a population to reduce the effect of genetic drift in the standard

GA has been emphasized by several researchers in previous work (Deb and Goldberg, 1989;

Goldberg et al., 1992; Horn et al., 1994; Mahfoud, 1995; Sareni and Krahenbuhl, 1998). To date,

various niching strategies have been proposed in the literatures and this section presents a brief

survey of the state of the art in the three most notable niching techniques: crowding, fitness

sharing and clearing.

2.1.1 Fitness sharing. Fitness sharing is the most well-known method for creating stable

subpopulations of individuals around the multiple local or global optimum points in the search

space (Goldberg et al., 1992; Goldberg and Richardson, 1987). The inspiration for adapting the

sharing technique to traditional GAs emanates from natural ecosystems where individuals of the

same species share a finite natural resource in an environment. The hierarchical organization of

species in a competing world of limited resources is shaped by the location and distribution of

18

these resources. Traditional GAs assume an infinite resource model where there is no need for

competition for resources and all individuals can comfortably coexist on the same peak and

receive the same fitness that they would have if they were the only individual on that peak.

Hence, in the case of multimodal functions of unequal peaks, all individuals tend to seek the

highest peak and converge to that point. Also, in multimodal functions of equal peaks, the

population will converge to one of the peak locations arbitrarily. The feasibility of resource

sharing in evolutionary algorithms was first pointed out by Holland (J. Holland, 1975). But the

first implementation of fitness sharing to model a resource contention within a simple GA was

given by Goldberg and Richardson (Goldberg and Richardson, 1987). It is based on the idea that

a point in a search space has limited resources which must be shared by all individuals that

occupy similar search space (Davidor, 1991). As more and more individuals get attracted to the

highest peak, the resource at that peak gets depleted and other lower peaks in the search space

begin to attract individuals.

Sharing in an Evolutionary Algorithm (EA) is implemented by scaling the fitness of an

individual based on the number of “similar” individuals present in the population (Cioppa et al.,

2007; Goldberg and Richardson, 1987). It lowers each individual’s fitness by an amount nearly

equal to the number of similar individuals in the population. The raw fitness of the individual is

reduced by the number of similar solutions in the population belonging to the same niche

(Goldberg et al., 1992; Goldberg and Richardson, 1987). Scaling an individual’s fitness is

controlled by two operations, a similarity function, which measures the distance between two

individuals in either the genotypic or phenotypic space, and a sharing function (Deb and

Goldberg, 1989; Goldberg et al., 1992; Horn et al., 1994). The sharing function is shown in

equation (2.1).

19

sh(di) {
 (

di

 sh

 if di sh

 otherwise

 (2.1)

Here di,j is the distance between individuals i and j, sh is the niche radius and the constant is

usually set to 1 for a triangular sharing function. And the niche count, ni is calculated by

summing a sharing function over all individuals of the population as given in equation (2.2),

where m is the number of individuals occupying the same niche.

ni ∑ sh(di

m

 (2.2)

Now, the shared fitness of an individual i is calculated using equation (2.3).

 sh i
 i

ni
 (2.3)

Where, Fi is the raw fitness of the individual.

As can be seen from the equation above, the degree to which two individuals are

considered to belong to the same niche is controlled by the sharing radius. And, the performance

of the fitness sharing relies strongly on the proper choice of the niching radius. This is one of the

limitations of the fitness sharing technique. In general choosing the optimum niche radius

requires a priori knowledge of the distribution of the peaks in the objective function (Dick, 2010;

Dick and Whigham, 2006).

2.1.2 Crowding. The standard crowding method was first introduced by De Jong to

promote useful diversity in the population to prevent premature convergence of the GA (Jong,

1975). In this method, a fraction of the total population called the generation gap is allowed to

reproduce at each generation. The crowding factor (CF) determines the number of individuals

selected from the population for comparing the similarity of the new offspring. Similarity of

individuals can be determined by means of a distance measure, either genotypic or phenotypic

20

distance between individuals. The new offspring then replaces the most similar individual taken

from this randomly drawn subpopulation of size CF. Later, Mahfoud introduced a modified

crowding technique termed “deterministic crowding” (Mahfoud, 1994a, 1995) to improve the

standard crowding by introducing competition between children and parents of identical niches.

In a deterministic crowding, the new offsprings replace the nearest (measured in phenotypic

distance) parent provided it has a higher fitness. Deterministic Crowding is simple, fast and

requires no additional parameters. Its weakness is that as species of higher fitness value always

tend to win over species of lower fitness, it fails to provide sufficient restorative force to

maintain diversity. Mengshoel and Goldberg introduced a probabilistic crowding to mitigate this

shortcoming (Mengshoel and Goldberg, 1999). In this scheme, stronger individuals do not

always win over weaker ones; rather they win proportionally to their fitness.

2.1.3 Clearing. The clearing type niching is essentially similar in principle to the explicit

fitness sharing technique. But, instead of uniformly distributing the resource to the entire

subpopulation in a given niche, it allocates the whole resource only to the best members of the

subpopulation. It is based on a winner-takes-all strategy where it preserves the fitness of the best

individuals of each niche and resets the fitness of the others with in the niche radius (Petrowski,

1996). This convergence to only one of the alternatives is undesirable in multimodal

optimization of real problems, because we are interested in getting information about good points

and better solutions.

2.3 The Niche Radius Problem

In a multimodal fitness landscape, the goal of a niching technique is to evolve the

population in to stable subpopulations. The number of niches should map to the number of

optimum points of the fitness landscape. The fitness sharing method has been the most popular

21

niching techniques proposed in the literatures. However, the success of the algorithm entirely

depends on the appropriate choice of the niche radius. Using too small niche radius results in

discovering too many fictitious niches while a too large radius cannot discriminates between

neighboring niches which turns the niching technique to that of a simple GA. If a priori

information about the fitness landscape (such as the number of peaks and the distance between

them) is known, then estimating the niche radius would not be a problem. But in most of the real

world problems, a priori information about the fitness landscape is not available. This puts a

serious limitation on the practicability of the radius dependent sharing techniques (fitness sharing

and clearing schemes). This limitation has inspired previous research to go in two main

directions in the past. One area of research has primarily focused on discovering alternative ways

of niching techniques. Spatially structured GAs (Dick, 2010; Dick and Whigham, 2008),

clustering based niching techniques (Ando et al., 2005; Streichert et al., 2004; Zhang et al.,

2006), crowding GA (Jong, 1975), deterministic crowding (Mahfoud, 1995), a species

conserving genetic algorithm (SCGA) (Li et al., 2002) and many others fall under this line of

research. These methods do not consider any sharing scheme. In deterministic crowding,

diversity is introduced to the population through a guided replacement (i.e. parents are replaced

by offsprings only when the offsprings have a better fitness) (Mahfoud, 1994a, 1994b). SCGA

maintains the fittest individual for each species until a fitter individual for that species is

discovered in a later iteration (Li et al., 2002).

The second research direction has entirely focused on how to estimate the niche radius

dynamically. Deb and Goldberg, proposed a technique for estimating the niche radius given the

heights of the peaks and that their distances are known a priori (Deb and Goldberg, 1989). This

approach is very limited as in most real applications there is very little prior knowledge about the

22

fitness landscape. In implicit fitness sharing (R. Smith et al., 1993), similar individuals in a

population compete for limited and explicit resources with no limitation on the distance between

peaks. Though there is no need of estimating the niche radius the algorithm’s performance

depends on appropriate choice of other parameters such as the size of the sample of individuals

that compete, the number of competition cycles and the definition of a matching procedure.

Miller and Shaw developed a dynamic niche sharing technique that is able to efficiently

identify and search multiple niches in a multimodal domain (Miller and Shaw, 1996). The

algorithm attempted to identify the multiple peaks dynamically to classify all individuals as

either belonging to one of these dynamic niches (if individuals are within the niche radius of a

dynamic peak or else belonging to the “non-peak” category. The authors claimed a better

performance as compared to the standard sharing and deterministic crowding techniques. The

algorithm still shares the drawback of the standard sharing method as it made assumptions on the

number of niche peaks and the distance between them, which in most real scenarios are not

known a priori.

In (Shir and Back, 2006), the authors introduced the concept of adaptive individual niche

radius to address the niche radius problem . The idea brings a new representation where the niche

radius is encoded as part of the chromosome structure of each individual and adapts along with

other parameters during the course of evolution (Shir and Back, 2005; Shir et al., 2007).

A dynamic niche identification technique based on the characterization of the dynamic

behavior of the evolutionary algorithm in terms of the mean and standard deviation of the

number of niches discovered during the evolution was proposed in (Cioppa et al., 2004, 2007).

By varying population size and the niche radius iteratively and observing the pattern of the

variation of the mean and standard deviation at each generation, they gave an estimate on the

23

optimal values of the population size and the niche radius without any a priori information on the

fitness landscape. The dynamic niche identification technique proposed does not make any

assumption on the priori knowledge of the fitness landscape but it is still based on knowing the

number of peaks. The applicability of this algorithm is limited especially when the search space

is too big and the fitness landscape is too rugged, as iteratively varying the niche radius would

involve too much computation. In addition, the algorithm is very subjective and it is difficult to

accurately estimate the optimum value of the niche radius by simply looking in to the variation

of the mean and the standard deviation.

The authors in (Chang et al., 2010) introduced a dynamic identification of the niches

based on the idea of niche migration to automatically evolve the optimal number of niches. The

algorithm requires only an initial guess of the niche radius, possibly set to the minimum value

that could at least result in the prevalence of two niches. The idea of niche migration is based on

the analogy of population dynamics that when a given city is crowded people in that city start

migrating to a nearby city (Chang et al., 2010; Chang et al., 2011). The technique was

successfully applied to data clustering with no assumption on the number of clusters and the

distribution of the data (Chang et al., 2011).

The Adaptive Isolation Model (AIM) introduced in (Streichert et al., 2004) used a

clustering algorithm to identify different regions of attractors and then the subpopulation that

makes up the clusters are isolated and optimized independently. It was claimed that the algorithm

is both efficient (since crossovers will only include parents from the same attractors reducing the

number of offspring sampled outside of the attractors) and comprehensive (the chance of

discovering a suboptima in weaker attractors increases by isolating strong attractors). This

algorithm is based on the assumption that for a multi-modal fitness landscape the GA distributes

24

the population among the different attractors. This however requires some form of diversity

preserving mechanism (e.g. crowding or some other form of inducing diversity).

There is quite a limited research on dynamically estimating the niche radius. The earlier

work was by Deb and Goldberg (Deb and Goldberg, 1989). The authors made a comparison

between crowding and fitness sharing methods and an estimate on the niche radius was also

given. The estimation on the niche radius was based on the assumption that number of peaks in

the fitness landscape is known a priori. Dick also proposed a local clearing technique for

automatic adaptation of the niche radius for spatially structured population (Dick, 2010; Dick

and Whigham, 2006, 2008). In our implementation, we used a modified version of the dynamic

niche identification techniques introduced by the authors in (Chang et al., 2010) to estimate the

niche radius.

2.4 Evolving Hierarchical Cooperation in Classifiers

2.4.1 LCS overview. A Learning Classifier System (LCS) is a machine learning

paradigm where an agent learns to perform a certain task by interacting with a partially known

environment via guidance of a reward signal that indicates the quality of its action (J. Holland,

1980; R. Smith and Goldberg, 1990). Classifiers are rules in the form of “if condition then

action” format. In an LCS, the solution domain initially contains a large population of candidate

classifiers. The learning process begins with this random population and needs to evolve it to

optimal solutions through training. The goal of the classifier in the learning process is to

accumulate as much reward as possible. The reinforcement learning guides the search for

solution by rewarding classifiers that propose a correct action.

Holland’s formulation of LCS involves a bucket brigade algorithm that takes care of the

credit assignment task in LCSs (J. Holland, 1985; J. Holland and Holyoak, 1988). Each classifier

25

is assigned a strength that is adjusted by the bucket brigade algorithm in such a way that it

reflects the classifier’s overall usefulness to the system (Booker et al., 1990; J. Holland and

Reitman, 1977). In the bucket brigade, classifiers that match to the current input bid for posting

their message in the message list (J. Holland, 1985). The message list allows classifiers to

communicate directly with each other through paying and charging of a reward (J. Holland,

1992; J. H. Holland, 1995). The learning objective in LCSs can be very general, for instance to

survive. Unlike most reinforcement learning algorithms, LCSs do not make any particular

assumption on the environment and on the agent’s goal which is generally defined in terms of

adaptation to the environment (Kovacs, 2004).

There are two major types of LCS: Michigan and Pittsburgh style LCSs. The

classification is based on their advocator’s affiliation (University of Michigan and University of

Pittsburgh respectively). In the Pittsburgh formulation of LCS, individuals in a population are

complete solutions to the problem (Bacardit 2004; S. Smith, 1980). An individual is a rule set

and the length of a rule is fixed while the number of rules in one rule set varies. Individuals in

the population compete among themselves to correctly classify the training samples. The

working principle of Pittsburgh LCSs is essentially similar to GA. The fitness of an individual in

the population is measured by the classification accuracy of the rule set (Bacardit et al., 2007).

But in Michigan style LCS, individuals are rules and the solution to the problem is the whole

population. An individual rule covers part of the solution and coordination among rules and a

mechanism to evaluate the performance of rules in the form of reward or punishment is essential.

The use of the term LCS in this work adheres to Michigan style LCS. The standard LCS consists

of three major components: the message and rule system, the apportionment of credit and the

discovery component (Booker et al., 1990; J. Holland, 1980, 1986).

26

The apportionment of credit subsystem in an LCS addresses the issue of credit

assignment which serves as a measure of the classifier’s performance. It is based on an economic

analogy where a classifier garners credit in the form of strength (a kind of capital). It involves a

bid competition among classifiers that match to the current environmental input. Accordingly,

matched classifiers bid a certain proportion of their strength and rule conflicts are resolved based

on a probability distribution over the bids (R. Smith and Goldberg, 1990). A winner classifier has

to pay out all its debt through the clearing house hence risking a certain percentage of its strength

with the possibility of getting a reward. Also, to promote the exploration of the classifier space, a

random noise is added to the deterministic bid (Homaifar et al., 1988). In this system, classifiers

communicate with each other through the message list in addition to directly interacting with the

environment. Many of the variants of classier systems are alternative schemes for apportioning

or accumulating credit.

An LCS uses a GA as a search engine to discover new rules from a population of

candidate rules based on the experience of existing rules. GAs are a class of computerized search

procedures that are based on the mechanics of natural genetics (Goldberg, 1989). However, the

GA used in an LCS is different from a standalone GA. Consider for instance the problem of

“function optimization”. In a standalone GA, the intention is to find parameter settings which

correspond to the extremum of the fitness function. There is no notion of generalizing across

states and no need for a measure of the accuracy with which this is done. Also, there is no

concept of environmental state (i.e. the GA structure lacks the condition part of the classifier). It

only manipulates a set of parameters corresponding to the action part of a classifier. So a

standalone GA is a function optimizer that seeks for points of maximum functional value in the

search space, whereas the GA in an LCS serves as a function approximator (Kovacs, 2004).

27

Since its first conceptual inception by John Holland in 1976 (J. Holland, 1976), the LCS

idea has stimulated a number of investigations of its merit for some real-world applications such

as gas pipeline control (the first application) (Goldberg, 1983), Boolean function learning

(Wilson, 1985), sequence prediction (Robertson and Riolo, 1988), letter recognition (Frey and

Slate, 1991) and job-shop scheduling (Hilliard et al., 1987). The basic structure of an LCS is

depicted in Figure 2.3.

ActionState Reward

Environment

Detectors Effectors

Message space

Rule baseClearing House
Discovery

Component

AOC

Learning Classifier

System

Figure 2.3. The structure of a learning classifier system.

The LCS detects its environment through its detectors and takes appropriate action with

the help of its effectors. During the learning phase, a feedback signal is provided by the

environment in the form of a reward or punishment to guide the learning system. In application

mode, no external feedback is provided and the LCS applies its knowledge to predict the

environment in the form of an action when triggered by a given input.

To date, several modifications have been made to the traditional LCS. Wilson introduced

a strength based learning classifier system known as the zeroth-level classifier system (ZCS) in

1994 (Wilson, 1994). A year later, he introduced accuracy based classifier system (XCS) which

brought a major change in an LCS's rule fitness calculation (Wilson, 1995). The fitness is made

to represent the accuracy of the prediction instead of the prediction itself. Hybrid techniques,

28

such as fuzzy-xcs are also proposed for single step reinforcement problems (Casillas et al.,

2007). XCS maintains in the population both classifiers that consistently receive high reward and

those that consistently receive low reward. As a result, it usually requires a higher population

size as compared to strength-based fitness, which keeps only classifiers receiving high reward in

the system (Butz et al., 2004).

In strength based LCSs, the past performance of a classifier is measured by the amount of

its current strength. Strength is used as a means of resolving conflicts and as a fitness for the

genetic algorithm. In our previous work, we introduced a modified bidding strategy in LCSs by

allowing classifiers to get a loan from a loaning agent termed a ‘bank’ during auctions

(Workineh and Homaifar, 2011). The loaning approach followed was centralized in the sense

that there is only one central bank issuing the loan. A bid history variable that gives classifiers a

clue about the potential of competent classifiers was also introduced. We also implemented a

more compact, less complex and more realistic distributed loaning strategy that allows a loan

exchange among classifiers to play a dual role (loaners and borrowers) among classifiers in the

systems (Workineh and Homaifar, 2012c). The generalization capability of an LCS by means of

using hash symbols in its condition string gives it the potential to develop a compact

representation of the concepts learned.

2.4.2. Default hierarchy. Smith and Goldberg (R. Smith and Goldberg, 1990) introduced

a modified bidding strategy to allow the formation of default hierarchies. The bid amount is

made proportional to the specificity of the classifier’s condition to allow more specific classifiers

to fire instead of more general inaccurate classifiers. It was also indicated that incorporating a

specificity factor in to the bid computation does not enable the LCS to distinguish between

default and exception rules at steady state. To alleviate this shortcoming taxation was introduced.

29

Tax in an LCS has a dual purpose: to eliminate classifiers that serve no purpose but whose

strengths are not low enough to qualify them for deletion by the GA and to provide a separation

between default and specific classifiers at steady state. Besides, the authors suggested a necessity

auction to improve the LCS’s simulation of auction dynamics and to induce bid separation that

responds to the entire system’s performance (R. Smith and Goldberg, 1990; R. Smith and

Goldberg, 1992).

2.4.2.1 The starvation–protection dilemma. The starvation-protection dilemma has been

a bottleneck to research in attaining a working default hierarchy. The intention here is to protect

the default rule from firing when it is wrong without starving it. This requires a bidding strategy

that favors the exception when both match a given input. In (J. Holland et al., 2000; Riolo, 1987;

R. Smith and Goldberg, 1990), a bid amount proportional to the specificity is proposed. In this

kind of bidding strategy, exception classifiers bid a higher amount as compared to more general

classifiers in the system. The shortcoming of this type of protection (in a standard LCS) is the

consequent starvation of the default classifier when it is right. Protection is always associated

with an immediate starvation of the default.

In the standard formulation of LCS, starvation can happen in two ways. One is when a

more specific classifier having the same action as the default out bids the default and hence

prevents it from entering the active set and possibly getting a payoff (J. Holland, 1980; R. Smith

and Goldberg, 1990). The active set is a subset of the match set that contains the highest bidding

classifiers. The specific classifier tends to flourish in the population as a result of getting a payoff

from its environment. The other scenario is when an exception classifier with a wrong action

bids with the default classifier of the correct action. The exception classifier may prevent the

default from entering the active set again. In effect, the default has to wait until the exception

30

classifiers with wrong action die out of the system. But, as the default always belongs to the

match set, it incurs an overhead tax at every computation time. Both scenarios prevent the

default from firing and possibly receiving a boost in its strength in the form of a reward from the

environment. Thus, starvation augmented with continuous taxation continuously weakens the

default classifier until it is eventually eliminated by the GA. In such circumstances, a hierarchy,

even if emerges some time along the learning process, is unlikely to survive the selection

pressure of the GA.

2.4.2.2 Extending decision making to the match set. The objective is to allow the default

classifier to take over the decision making every time it is right. To avoid the starvation problem,

Wilson, in a detailed experiment using Boole (Wilson, 1989), proposed key modifications to the

standard LCS formulation. One remedy to avoid starvation is extending system decision to the

match set instead of limiting them to the active set. In Holland’s formulation of LCS, only

classifiers in the active set make decision on the system and any reward by the external

environment goes to the active set. Wilson’s experiments proved that extending the decision

making and resource sharing scheme to a rather bigger set of classifiers (the match set) improves

the system’s performance. The default is always part of the match set and an external reward is

distributed among all classifiers in the match set proposing the same action as the winner

classifier. This effectively avoids starvation of the default due to outbidding of other specific

classifiers in the system to qualify for the active set. As far as its action agrees with the winner’s

action, it always gets a fraction of the reward coming from the external environment. But, under

the same bidding and paying policy as proposed in (R. Smith and Goldberg, 1990; R. Smith and

Goldberg, 1992) and (Riolo, 1987), omitting the active set may lead to rampant

overgeneralization. To overcome this problem, Wilson suggested a different bidding and paying

31

policy in which specificity is retained in the bid calculation but eliminated when calculating the

classifier’s payout (J. Holland et al., 2000; Wilson, 1989). The bid amount is scaled by the

specificity while the actual pay out of the classifier depends entirely on its strength and the bid

coefficient.

2.4.2.3 The need for niching. In Michigan type LCSs, the GA searches through the space

of all possible rules to find and maintain a diverse, cooperative subpopulation. On one hand, an

LCS requires the strong selection pressure of the GA to discover new rules. On the other hand,

without some form of niching, the LCS cannot maintain a diverse set of cooperative rules in the

population due to the selection pressure of GA. Niching provides a restorative force to balance

the selection pressure that causes early convergence by maintaining useful diversity in the

population (Horn and Goldberg, 1996). Maintaining a diverse set of cooperative rules is

particularly important for the formation of default hierarchies and for temporal rule chains.

Many researchers have pointed out the importance of implicit (reward sharing) and

explicit (fitness sharing) niching for the evolution of cooperative classifiers. In previous work,

Booker (Booker, 1982, 1989) implemented niching using an indirect form of sharing and

introduced mating restrictions to limit mixing between niches. Wilson applied implicit niching in

LCSs by uniformly distributing a reward among classifiers that agreed with the system decision

for learning a Boolean concept. Smith and Valenzuela-Rendon later proposed explicit niching in

LCSs by applying fitness sharing using a hamming distance as a metric to find the niche radius

on the space of rules (R. Smith and Valenzuela-Rendón, 1989). Mahfoud also applied explicit

niching for GA-based classification of Boolean concepts which is analogous to a stimulus

response LCSs (Mahfoud, 1995). The model of a stimulus-response LCS is similar to the natural

immune system. The analogy between implicit niching in the immune system and resource

32

sharing in an LCS is also analyzed by the authors in (R. Smith et al., 1993). Horn and Goldberg

also stressed the importance of niching and gave a model to approximate the niche existence and

extinction times (Horn et al., 1994). Assuming a two niche scenario and all classifiers have the

same specificity, the authors demonstrated that the dynamics of an interacting and coevolving

population can be analyzed, predicted and controlled. The environment provides a reinforcement

signal to the learning system when it responds correctly. In a stimulus-response LCS, the system

takes action on its environment directly and receives an immediate reward or punishment as a

consequence of this action (Booker, 1982; Booker et al., 1990).

There are two major notions on how to distribute the reward among classifiers in the

active set. Holland first suggested that all classifiers in the active set should receive a constant

reward R and pay out their bid (J. Holland, 1980; J. Holland and Reitman, 1977). This notion of

sharing however does not lead to the formation of a default hierarchy as it does not distinguish

between correct and wrong classifiers. The limitation of this kind of reward sharing on the

formation of default hierarchy can be explained as follows. Consider for instance a scenario

where a default classifier of action zero exists in the system. Assume also that its strength is high

enough to outbid other specific classifiers in the match set and join the active set. This classifier

may or may not agree with the winning classifier’s decision but is going to receive a reward from

the environment either way. This kind of indiscriminate rewarding leads to the emergence of

sneaky classifiers that survive on the back of other reward generating classifiers and take over

the system.

To overcome this shortcoming, Wilson suggested that reward should be shared only

among classifiers that agree with the system’s decision. Wilson’s sharing scheme assumes a

fixed amount of external reward R to be divided evenly among all classifiers in the advocate list

33

(Wilson, 1989). The advocate list consists of classifiers in the match set that propose the same

action as the winner classifier.

The theory of equal reward sharing ignored the whole notion of competition in an LCS.

The intention of a classifier is to build up its strength by garnering as much reward as possible

from its environment. A good analogy here would be a competitive market economy where

whoever strived hard should be rewarded and accumulate wealth. Wealth in classifiers is

measured in terms of strength. Hence instead of using equal resource sharing, the rewarding

scheme should somehow be biased towards stronger classifiers. Strength is a measure of the

quality of a classifier and the rewarding scheme has to adjust the strength to reflect the

classifier’s overall usefulness to the system. We applied a fitness proportionate resource sharing

scheme where classifiers proposing the same action as the winner will get credit in proportion to

their strength. The proposed rewarding scheme resulted in a remarkable improvement in the

performance of the system and produced a viable and robust default hierarchy.

34

CHAPTER 3

Fitness Proportionate Niching (FPN)

Traditional Genetic Algorithms (GAs) fail to maintain useful diversity in the population

as a result of a genetic drift due to selection pressure, selection noise and operator disruption.

Genetic drift leads to early convergence making simple GAs suitable only for optimizing

unimodal functions. However, most real world optimization problems often deal with multi-

modal functions and hence require a technique to discover the location of multiple optima in the

search space. The conventional fitness sharing scheme based on the niche count has a limitation

when there is a high gap between the peaks of the multimodal function. It requires a high

population size in order to discover all the peaks simultaneously. The use of high population size

makes it computationally complex, especially when there is a big jump in fitness values of the

peaks.

FPN provides a solution to this limitation by uniformly distributing the population along

the various peaks. Like the traditional fitness sharing based on niche counts, this technique is

also based on the notion of limited resources where individuals in a given niche share the

resource of that niche. But, here individuals share the resource in proportion to their actual

fitness. Unlike the conventional sharing scheme, the difference in the fitness values of the

highest and lowest peaks does not affect the performance of the proposed niching scheme. This

chapter presents a comparison of the two techniques using both mathematical analysis and

simulations on well-known multi-modal test functions. A technique for estimating the niche

radius, complexity analysis and ecological analogy of the proposed niching technique are also

provided here. The last section presents a chi-square like deviation comparison for some of the

test bench functions in the literatures.

35

3.1 Test Functions

For testing the performance of the algorithm, multimodal functions of different difficulty

level (see Figures 3-1 to 3-5) are used from literatures during simulations (Cioppa et al., 2004,

2007; Deb and Goldberg, 1989; Sareni and Krahenbuhl, 1998). The mathematical expressions

for these functions are given in equations (3.1) to (3.5).

 a(x) sin

(x (3.1)

Figure 3.1. Fa(x)-a multimodal function with 5 equal peaks.

Most of the functions (Fa(x) to Fd(x)) are one dimensional and defined on the interval [0,

1]. The first three functions have 5 peaks located at approximate values of 0.1, 0.3, 0.5, 0.7 and

0.9. Fa(x) has equal peaks whereas Fb(x) and Fc(x) have unequal peaks (equations (3.1) to (3.3).

 b(x) e
 log (

x .
 .

 (x (3.2)

Figure 3.2. Fb(x)-a multimodal function with 5 unequal peaks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

F2

F3

F4F5

F1

36

In Fc(x), there is a big gap in the fitness values of the highest and smallest peaks. The

location of the highest peak tends to attract a significant proportion of the population. Fd(x) has

10 peaks unevenly distributed over the search space. The two-dimensional shekel foxhole

function (Fe(x)) has 25 peaks over the interval [-40,40].

 c(x) {
 e

 log (
x .
 .

sin

(x if x .

e
 log (

x .
 .

sin

(x if . x

 (3.3)

Figure 3.3. Fc(x)-a function with 5 unequal peaks with high fitness variation.

 () {
sin

 (x) if ((x [. .]) (x [. .]) (x [. .]))

 therwise
 (3.4)

Figure 3.4. Fd(x)-a multimodal function with unevenly distributed peaks.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

F2F3

F5

F4
F1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

37

 e(x y)

 . ∑

 i (x a(i)

 (y b(i)

i

(3.5)

Where

a(i) ((i mod)) and

b(i) (⌊
 i

⌋

Figure 3.5. Fe(x)-Shekel's foxhole function.

3.2 Mathematical Formulation

In FPN, sharing is in proportion to actual fitness and hence the niche count of an

individual i is given by equation (2.1) and its shared fitness is given by equation (3.7).

sh(di {
f if di sh

 otherwise
 (3.6)

fsh i
fi

∑ sh(di
M

 (3.7)

Where, M is the number of individuals in a given niche, fi is the raw fitness and fsh,i is the shared

fitness and di,j is the phenotypic distance between individuals i and j.

The feasibility of the proposed niching scheme can be verified both mathematically and

using simulation. It can be demonstrated analytically that FPN is indeed insensitive to the

difference in fitness of the peaks. Like every other population based stochastic search algorithm,

38

GAs also require a certain reasonable population size for sufficient exploration of the search

space. It can be shown that unlike the traditional fitness sharing, the FPN will tend to form a

stable subpopulation around all the niches with no additional restriction on the size of the

population for multi-modal functions of unequal peaks.

To get an insight on the performance improvement of PN over T S let’s consider a

multimodal fitness landscape with M unequal peaks with F1 and FM being the minimum and

maximum fitness values of the peaks respectively. Let the subpopulation size at each of the

niches be denoted by n1 to nM respectively and N be the population size.

Using the traditional fitness sharing scheme, the shared fitness of an individual i in the k
th

 niche

at steady state is given by equation (3.8) (Goldberg and Richardson, 1987).

 k

nk
 (3.8)

Assuming that after sufficient iteration almost all the population distributes around the M peaks,

we get equation (3.9).

n n nM N (3.9)

To discover all the peaks, it is required that the shared fitness values at each niche should

be approximately equal (i.e. f’1=f’2=. . f’M).

Substituting and rearranging terms, the number of individuals at the k
th

 niche is governed by

equation (3.10)

nk
 k

∑ i
M
i

N (3.10)

But using FPN, the shared fitness of an individual in the k
th

 niche is given by equation (3.11).

 k

 k
∑ fi
nk
i

 (3.11)

39

Where, nk is the subpopulation size at the k
th

 niche (location of a peak). After sufficient

generations, individuals in each niche will have approximately equal fitness (i.e. fi=fj, for two

individuals i and j in the same niche). Hence a simplified form of equation (3.11) is shown in

equation (3.12).

fk

nk
 (3.12)

From equation (3.12), for the shared fitness values to be equal, the population has to be

evenly distributed among all the peaks, irrespective of the difference in the fitness value at the

peaks (i.e. n1=n2 …. nM=N/M). So, for a multimodal function having M peaks, the expected

number of individuals at the k
th

 peak using TFS scheme is given by equation (3.13). But FPN

distributes the population around the optimum points uniformly as shown in equation (3.14).

nk
 k

∑ i
M
i

 N (3.13)

n
N

M
 (3.14)

It can be observed that, for a multimodal function with equal peaks (e.g. Fa(x)), equation

(3.13) would degenerate to equation (3.14). Hence, for multimodal functions with equal peaks,

FPN is essentially the same as the traditional sharing scheme. The underlying principle in FPN

considers all the peaks as equally important for the GA and hence the proportion of the

population at the different peaks does not really matter. This makes sense because from the

perspective of the GA, what is important is whether the niching scheme is able to form a stable

sub population around all the multiple optimum points. Once all the peaks are discovered, a

preference between the different peaks can be made by arranging the final population based on

the fitness values.

40

3.3 Complexity Analysis

Performance speed in GA depends on the population size. The higher the population size,

the more computation time it takes for the GA to converge to the optimum points. Let Pmin be the

minimum size of a niche (i.e, the minimum number of individuals a niche needs to have) and

PFPN and PTFS be the population size for the FPN and TFS algorithms respectively.

As discussed in the previous section, FPN distributes the population uniformly at each of

the peaks (see equation (3.14)). Hence, the lower bound of the population size required by the

FPN algorithm to discover all the peaks is given by:

P PN M Pmin (3.15)

And for the TFS, we know that the subpopulation size at each of the niches is proportional to the

fitness values of the niches. Hence, the population size at the minimum peak (P1 in this case) is

given by:

P

∑ i
M
i

 PT S (3.16)

Which means the lower bound population size for TFS is given as follows:

PT S P
∑ i
M
i

 (3.17)

The niche with the lowest fitness value needs to have at least Pmin individuals to be

considered as a valid niche. Hence, equation (3.17) becomes

PT S Pmin
∑ i
M
i

 (3.18)

This indicates that the traditional sharing scheme based on the niche count has a threshold

requirement on the minimum population size to discover all the peaks when the objective

function has unequal peaks. As the gap of the peak values increases, the required minimum

population size also increases drastically.

41

Comparing equations (3.15) and (3.18), we get equation (3.19).

PT S

P PN

∑ i
M
i

M
 (3.19)

From equation (3.19) it can easily be observed that FPN and TFS require the same

population size for a multimodal function of equal peaks. However, for a rugged fitness

landscape with large variation in fitness values of the peaks, the ratio in equation (3.19) becomes

very large. Consider for instance a two peak scenario where the highest peak is C times the

smallest one (i.e. F2=C*F1, where C is a constant greater than 1). Then, the ratio in equation

(3.19) is simplified as shown in equation (3.20).

PT S

P PN

 C

 C

 (3.20)

For instance, if F2 is 3 times higher than F1 equation (3.20) then indicates that FPN runs twice

faster than TFS.

For the test functions Fb(x) and Fc(x) given above, M=5, F1=0.251, F2=0.45, F3=0.7,

F4=0.91 and the value of F5 is 1 for Fb(x) and 10 for Fc(x). Fc(x) has a large fitness gap between

its highest and lowest peaks. If a niche size of at least two individuals is required at the lowest

peak (i.e. n1>=2) and substituting in the values, the expected subpopulation size at F1 for Fb(x) is

given by equation (3.21).

n

 N

 .

 . N

 (3.21)

This implies that for the niching technique to locate all the peaks of Fb(x), a population

size of at least 27 is required. In practice, the desired population size has to be much larger than

this ideal mathematical threshold. The optimum population size to discover all the peaks is

42

largely dependent on the ratio of the fitness at the peaks. The higher the fitness ratio between the

peaks, the larger is the size of the population required to discover all the peaks. This is more

evident in Fc(x). Fc(x) has a much higher fitness gap between its highest and lowest peaks as

compared to Fb(x).

Using the same expression given above and substituting in the numerical values Fc(x), the

expected number of individuals at F1 will be:

n

 N

 .

 . N

 (3.22)

Quantitatively speaking, a population size of at least 100 is required to have at least two

individuals at the lowest peak (F1). FPN overcomes this requirement on the minimum size of the

population by uniformly distributing the total population among the various peaks, irrespective

of the difference in the fitness value. From equation (3.15), it only requires a population size of

at least twice the number of peaks to have at least two individuals at each of the niches (i.e. one

tenth of the population size required by the traditional sharing scheme in this particular

example).

3.4 Performance Criteria

To verify the performance of FPN and compare it with the existing approach, three main

criteria are used in literatures. The first criterion is the percentage of number of peaks discovered

by the niching algorithm as a function of search cycle (generation). This, in effect is equivalent

to comparing the ratio of the sum of the fitness of the local optima identified by the niching

technique divided by the sum of the fitness of the actual optima in the search space. The second

criterion is the distribution of the population around the optimum points. This shows whether the

43

niching technique is able to evolve a stable and diverse subpopulation. Another way of

evaluating the performance of a niching technique is to measure the deviation of the actual

population distribution from the expected population distribution. This is commonly called the

chi-square like distribution and is discussed in the next section.

The goal of any niching technique in a multimodal optimization is to discover all the

unique niches corresponding to the optimum points that prevail in the fitness landscape. The

standard error measures the deviation of the number of niches discovered at each generation

from the expected number of niches. The simulation is repeated for a total of R runs each time

storing the number of niches discovered in a matrix of R rows and G columns. Then, the

expected number of niches and the standard error are calculated using equations (3.23) and

(3.24).

〈 (g 〉

∑Wr g g (

r

 (3.23)

E(g) √

 (
∑ (Wr g 〈v(g)〉

r

 (3.24)

Where V(g) and E(g) are the mean and standard error at generation g, Wr,g is the number of

niches discovered at the r
th

 experiment and g
th

 generation, G is the number of generations, R is

the number of times the simulation is repeated.

3.5 Ecological Analogy

The sharing technique introduced here has its inspiration from species interaction in

biological ecosystems. Ecological niches maintain diverse species where similar individuals

share the resource of that particular ecological niche. The traditional sharing technique is based

on the notion of spatial distribution of species following the location of a given resource. There

44

is no diversity in the type of the individuals in the species. The traditional GA assumes the

resource of a niche is infinite and hence a niche with the highest fitness value can accommodate

all of the population. The whole population then rushes to converge to the global optimum losing

diversity and hence premature convergence. The sharing concept is based on a finite resource

model (i.e. the resource of a given niche is finite). Higher peaks in the fitness landscape attract

more individuals and as more and more individuals come to that location, the resource of that

particular niche gets depleted and niches of smaller fitness value tend to attract other individuals

in the population.

FPN is also based on a finite resource model approach. The underlying principle in FPN

is analogous to an ecological system that embraces diverse species sharing a non-uniform

environmental resource (for instance, in an ecosystem antelope, hyenas and rhinoceros can

occupy spatially different locations consuming different amount of the same resource, water for

example). Diversity is not only in spatial distribution but also in the type of individuals. Under

such an analogy different amount of the same resource can support equal number of different

species (for instance, a 10 meters cube of water may support 3 lions whereas 6 meters cube of

water may suffice to support the same number of dogs for the same duration). The non-

uniformity in the distribution of a resource is accounted by the multi-modal fitness landscape

with unequal peaks. Unlike, the traditional sharing scheme where most of the population

converges at a niche of more resources, FPN distributes equal number of different individuals

along the various peaks. This approach makes sense because from the perspective of the GA,

what is important is whether the niching scheme is able to form a stable subpopulation around all

the multiple optimum points. In other words, FPN considers all the peaks as equally important

and hence the subpopulation size is independent of the fitness of the peaks.

45

Figure 3.6 shows an ecological analogy where a different amount of a resource (F1 to F4) can

support equal number of (N) individuals of different species.

3.6 Dynamic Niche Identification with Niche Expansion (DNINE)

As pointed out earlier in this dissertation, the performance of both the clearing and fitness

sharing types of niching is highly dependent on the use of proper values of the niche radius,

population size and the number of peaks of the multi-modal function. That requires a priori

knowledge of the search space and fitness landscape which makes their application to optimizing

most real world problems nearly impossible.

Figure 3.6. Ecological analogy for a multimodal fitness landscape.

A
m

o
u
n
t

o
f

a
R

es
o
u
rc

e

M4 M3 M2 M1

F4

F3

F2

F1

Distribution of niches (resource locations)

N --

N --

N--

N --

 -- Species 1

 -- Species 2

-- Species 3

 -- Species 4

46

Without an accurate estimate of the niche radius and knowledge of the number of peaks

and the gap between them, the performance of the TFS and clearing techniques can be very

dismal. Particularly, a correct value of the niche radius is very important for the sharing

technique so as to maintain a stable and diverse subpopulation at the various peaks. For a higher

niche radius, the sharing technique cannot discriminate between neighboring niches, while a very

small radius value will lead to the creation of false niches and reduce the overall performance of

the technique. Our niching technique, though it is insensitive to the difference in the fitness

values of the various peaks, still relies on the accurate estimation of the niche radius. In our

work, we applied a modified version of the dynamic niche identification technique proposed in

(Chang et al., 2010). The algorithm is based on the idea of population dynamics in a given city.

When a city is crowded, scarcity of resource and living cost motivates part of the population to

migrate to nearby cities or leads to the emergence of new cities. Similarly, when a niche is

overcrowded part of its population migrates to nearby niches. There is no niche migration in our

implementation. Instead, the idea of niche expansion is applied by merging two niches when

there is no valley between them. The algorithm starts with a small initial niche radius and

subdivides the population based on this radius. Normally, the use of a small niche radius results

in the formation of fictitious niches. Niche refining is done using the niche expansion principle

(merging any communicating niches) to identify actual niches that prevail in the population. To

clarify the working principle of the niche expansion technique, we provided the definition of

related terminologies below. The algorithmic implementation of the DNINE algorithm is given

in Appendix A.

Definition 1: Niche Master. Each niche (subpopulation) is represented by its master. The

niche master of a given niche is the individual with the highest fitness in that particular niche.

47

Definition 2: Distance between Niches. The distance between two niches is defined as

the distance between their niche masters. Suppose Mi and Mj be the two niche masters of Ni and

Nj, then the distance between these two niches is calculated using equation (3.25).

 n(Ni N) d(Mi M) ‖Mi M ‖

 (3.25)

And the line that intersects the two niche masters can be expressed using equation (3.26).

 Mi k(M Mi where k (3.26)

Definition 3: Communication between Niches. Two niches are said to be

communicating with each other when there is no valley between them. To check whether there is

a valley between the two niche masters, a series of points (x1, x2,… q) are generated between the

two niche masters. If there exists a point xm that satisfies the inequality in equation (3.27), then

there exists a valley between the two niches and hence there is no communication between them.

f(xm) min(fi f) (3.27)

Where fi and fj are the fitness values of niche masters i and j respectively.

Absence of communication between the two niches indicates that the two niches are

actual independent niches and they should be maintained in the population. However, if there is a

communication between niches, it means that both niches are on the same side of a valley and

possibly they can be merged. If no point has lower fitness than either of the end points, then it

indicates that no valley lies between the two niches. The core idea behind the niche expansion is

that niches with no valley in between can be merged and a new niche master representing the

bigger niche is selected.

In Figure 3.7, M1 and M2 communicate where as M1 and M4 do not, as there is a valley

between them. Accordingly, the niche expansion algorithm merges M1 and M2 in subsequent

iterations while M4 stays as an independent niche.

48

Figure 3.7. Niche distribution for a multimodal fitness landscape.

A sequence of points on the line joining the two niches are generated (see Figure 3.7, x1

to x6, for instance) to determine whether the two niches communicate or not. Then, the fitness of

those points is compared with the fitness of the niche masters. As can be seen from Figure 3.7

above, there exists a point (x4) satisfying the inequality in equation (3.27). This indicates that

there is a valley in between the two niches, M1 and M4 in this case.

Figure 3.8 shows the impact of noise on the performance of the niche expansion

algorithm. M2 has a lower fitness as compared to M1 and M3 indicating that there is a valley

between M1 and M3. This however can be due to the impact of noise and M1 and M3 should not

be considered as two independent actual niches. To overcome the effect of noise, a noise

tolerance factor is introduced to modify the inequality given in equation (3.27) as shown in

equation (3.28).

f(xm) min(fi f) (3.28)

Where is a random number between 0.8 and 1.

M4

M1

M2

x6 x1 x2 x3 x4 x5

Line connecting two niche masters

M3

49

Figure 3.8. Effect of noise on niche migration.

3.7. Chi-square like Distribution

To test the statistical soundness of the algorithm, a chi-square like deviation is computed

for two of the benchmark functions (Fa (x) & Fc(x)). The chi-square like deviation for the q niche

peaks plus the nonpeak niche is given by equation (3.29).

 √∑(
 i i

 i

)

 q

i

 (3.29)

Where,

i
 N

fi

∑ fk
q

k

 i i(

i

N

 q ∑ i

q

i

q

(3.30)

The chi-square like deviation is a measure of the deviation of the actual population

distribution from the ideal population distribution at each of the peaks. The smaller the chi-

square value, the lesser is the deviation from the ideal distribution and hence the better is the

algorithm. As can be seen from Figure 3.9, FPN and TFS have nearly the same distribution for a

M1

M2 M3

M4

50

multi-modal function of equal peaks (Fa(x)). This is expected because, for a multi-modal fitness

landscape with equal peaks, TFS also tends to distribute the population evenly across the various

peaks at steady state.

Figure 3.9. Chi-square like deviation for Fa(x).

However, as the gap in fitness values of the peaks increases, FPN starts to outperform

TFS. This is clearly evident from Figure 3.10, where there is a big difference in the chi-square

like values. The FPN algorithm is able to distribute the population along the various peaks with a

small deviation from the ideal mathematical distribution irrespective of the gap in fitness values

at the peaks. The results are of course in harmony with the distribution obtained from simulation

results in Chapter 6 (see Table 6.1 and Table 6.2).

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
h

i-
S

q
u

ar
e

L
ik

e
D

is
tr

ib
u

ti
o

n

Generations

TFS,N=30

TFS,N=50

TFS,N=100

FPN,N=30

FPN,N=50

FPN,N=100

51

Figure 3.10. Chi-square like deviation for Fc(x).

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

C
h

i-
S

q
u

ar
e

L
ik

e
D

is
tr

ib
u

ti
o

n

Generations

TFS30

TFS50

TFS100

TFS150

FPN30

FPN50

FPN100

FPN150

52

CHAPTER 4

Evolving Hierarchical Cooperation in Classifiers

Classification is a supervised learning where the learning system, once sufficiently

trained, seeks to categorize previously unseen instances in to correct classes or labels. A

Learning Classifier System (LCS) accomplishes this task by evolving a population of classifiers

using a reinforcement signal. It is a machine learning system based on reinforcement learning

and Genetic Algorithms (GAs). Like an expert system, it utilizes a knowledge base of

syntactically simple production rules that can be manipulated by GA (J. Holland, 1975, 1992).

The use of a rule-based system allows an LCS to conveniently represent and refine complex

control strategies (Wilson and Goldberg, 1989). Classifiers are rewarded every time an input is

correctly classified. All classes (labels) are considered equally important (i.e., a classifier which

correctly classifies an input from one class and another which correctly classifies a different

input from another class are equally rewarded by the trainer). This essentially turns the

classification problem into an optimization of a multimodal function with equal peaks. To

achieve this task, an LCS has to build a set of rules that work in coordination to accurately model

a given environment. This requires a mechanism to evolve and sustain a diverse, cooperative

population of rules that together represent a concept or model a set of behaviors that solve a

given problem. Building a hierarchical set of rules, where accurate and more specific rules

respond to a subset of the situations covered by more general but less accurate rules is vital for a

concise concept description, especially when dealing with an environment that has huge numbers

of states. The LCS in its very nature has a unique power of discovering cooperating rules through

the robust search ability of the GA by the guidance of reinforcement learning. However, the LCS

would tend to lose diversity due to a strong selection pressure of the GA. Hence, to maintain a

53

cooperative diversity while applying a selection operator to the population of rules, it must

incorporate some form of niching mechanism (Horn, 1993; Horn and Goldberg, 1996). Niching

provides the LCS with the required restorative force to maintain diversity in the face of selection

pressure. This chapter explores the impact of niching in LCS from the perspective of attaining a

diverse set of cooperative hierarchical rules. The FPN niching technique introduced in chapter 3

of this dissertation is used as a resource sharing mechanism to reinforce classifiers that match to

a given input.

In this work, we considered a stimulus-response (Nasraoui and Krishnapuram) based

LCS system where an immediate reward or punishment is provided at each computational time

step by the external environment. For such a system, there is no need of a complex credit

assignment algorithm like the bucket brigade and hence the message list in Holland’s

formulation of LCS is omitted in our formulation. Though this work exclusively focuses on

investigating the significance of implicit niching for evolving a multi-level hierarchical

cooperation in a population of diverse rules for Boolean function learning, the algorithm

developed here can be extended to any evolutionary algorithm that seeks to evolve a hierarchical

set of cooperating rules for a concise concept description. A mathematical formulation for

predicting the steady state strengths of subpopulations is also provided. Most of the content in

this section is published in our recent work on the formation of default hierarchy in Boolean

function learning using LCS (Workineh and Homaifar, 2012b).

4.1 Hierarchy in LCS

In a Michigan style LCS, an individual classifier in the population represents part of a

solution to a given problem. There is no single rule that adequately models the environment

instead the solution domain comprises of a set of rules that collectively give a better model of the

54

environment. Hence, a complete solution to the problem involves coordination among sets of

rules in the population. And the search for cooperative rule sets takes place within a single

population of competing and cooperating rules. Consider a scenario where the learning system

needs to model an environment with huge number of states. An LCS that is to operate in such an

environment can be modelled in either of two ways. The first is to build a model of the

environment using a set of rules that never make mistakes. This homomorphic approach,

however, is not practically feasible as it requires a vast number of rules to model realistic

environments (Riolo, 1987). Besides, an environment exhibiting perpetual novelty combined

with a limited sampling of it adds another order of complexity to this homomorphic approach

(Booker, 1982, 1989). The other alternative is to build a hierarchical model where the task of the

learning system is to categorize the states in to groups that can be treated in a similar way (Riolo,

1987; R. Smith and Goldberg, 1992). A hierarchical rule set provides a multi-level structure in

which rules at the bottom of the hierarchy are very general and those at the top are very specific

(refer to Figure 4.1).

S

p

e

c

i

f

i

c

i

t

y

H

e

r

a

r

c

h

y

######:1

0###1#:0

100###:0

01##10:1

0011#0:0

General

Classifiers

Specific

Classifiers

Input Space Coverage

i

Figure 4.1. A hierarchical rule structure.

55

Take for instance, the 6-bit Boolean multiplexer (6-mux) problem whose disjunctive

normal form is as follows:

 ̅ . ̅ . . ̅ . ̅ (4.1)

Where a1… 4 are the data lines, s1 and s2 are the select inputs and Y is the output. The system’s

decision is correct when its output value is the same as the value of Y in equation (4.1) for a

given input. Figure 4.2 shows both non-hierarchical and a hierarchical solution set for the 6-mux

problem.

000###:0

001###:1

01#0##:0

01#1##:1

10##0#:0

10##1#:1

11###0:0

11###1:1

000###:0

01#0##:0

10##0#:0

11###0:0

######:1

Non hierarchical set Hierarchical set

Figure 4.2. Hierarchical and non-hierarchical solution set for 6-multiplexer problem.

The 8 rules in the non-hierarchical set in Figure 4-2 are the perfect solutions to the 6-mux

problem. With default hierarchy, the same problem can be solved with a more compact

hierarchical rule set. The last rule (with all hashes in its condition) in the hierarchical set is a

default rule and the other four rules are exception rules. The default rule matches to all inputs

covered by the exception rules but it makes a correct decision only half of the time. The default,

while correct most of the time, is less accurate and makes mistakes for some cases it matches.

Similarly, a hierarchical solution for the more complex problem (11-multiplexer) is shown in

Figure 4.3.

56

Figure 4.3. Hierarchical and non-hierarchical solution set for 11-mux problem.

Generality and specificity of a classifier in an LCS is dependent on the number of hashes

(i.e ‘#’ symbols) in its condition. The more hashes a classifier has, the more general it is and

covers more of the environmental niches. On the other hand, a specific classifier has fewer

numbers of hashes in its condition. An exception rule is a specific rule with an action different

from that of the default. Hierarchy can occur at any level within the rule sets. The term default

hierarchy here refers to a hierarchical set of rules that contain a default rule for the default class

along with other exception rules.

A working default hierarchy provides a great parsimony of the required rules to model

the environment. In addition the system’s performance can be improved by adding more

exception rules to the hierarchy. The essence behind achieving a working default hierarchy is

therefore to build a more compact rule set with a reasonably fair accuracy as compared to the

homomorphic model which aims to discover a set of rules that never make mistakes. This

requires the coexistence of exception and default rules in the system.

Nonhierarchical Set

0000#######:0

0001#######:1

001#0######:0

001#1######:1

010##0#####:0

010##1#####:1

011###0####:0

011###1####:1

100####0###:0

100####1###:1

101#####0##:0

101#####1##:1

110######0#:0

110######1#:1

111#######0:0

111#######1:1

Hierarchical Set

0000#######:0

001#0######:0

010##0#####:0

011###0####:0

100####0###:0

101#####0##:0

110######0#:0

111#######0:0

###########:1

57

In this regard, there are two major challenges to the formation of a viable default

hierarchy in LCS. The first challenge is how to evolve the population to a hierarchical set. The

learning process has to drive the system from an initial state of random population of rules to a

state that embraces a hierarchical set of rules which models the environment at a desired

accuracy. Evolving to a hierarchical set is one part of the challenge. Once the hierarchy is

attained, it is also equally important to sustain it for generations in the face of deletion by the

discovery component.

At times when a default and an exception rules match to an input, there should be a

mechanism that favours the exception to fire. In other words, for a hierarchy to work properly,

the exception rule has to cover the default at times when the default is wrong. These

requirements urge the use of not only a proper niching scheme to maintain diversity but also a

special bidding strategy to favor the exception rule over the default when both match to an input.

4.2 System Formulation

4.2.1 Classifier format. The classifier format in our implementation has 5 parameters:

condition, action, strength, experience (Exp) and creation time (Ctime) (see Figure 4.4). The

condition is a string from the ternary alphabet (0, 1 or #) and the action is binary (0 or 1). The

hash symbol (# in the condition is “don’t care” and matches to any input. The experience and

creation time parameters are added for better understanding of the learning process. Experience

(Exp) indicates the participation of a classifier in decision making process (i.e. match set) and the

creation time refers to the iteration time at which the classifier is created. It helps to investigate

whether a hierarchy once evolved can be survived for generations.

Condition Action Strength Exp Ctime

Figure 4.4. Classifier format.

58

The following notations are used in this dissertation: [P] refers to classifiers in the

population, which is the bigger set, [M] refers to the match set and [AL] represents classifiers in

the advocate list, which is a subset of [M].

4.2.2 Learning system. Learning in an LCS is an ongoing adaption to a partially known

environment and not an optimization problem as in most reinforcement learning systems. The

learning system includes the following major components: the auction, clearing house (CH),

fitness proportionate resource sharing (FPRS) and the GA.

4.2.2.1 Auction. This is the part where classifiers in the match set participate in auctions

by bidding a fixed proportion of their strength. The bid amount depends on the value of its

current strength and the specificity. The deterministic potential bid (PB) of a classifier i during

auction is given in equation (4.2).

P i CbidSi (
NH

CL

⏟
 (4.2)

Where NH is the number of hashes in the condition string, Cbid is the bid constant (see

Table 4.1), Si is the current strength and CL is the condition length. The specificity parameter is

the ratio of the number of non-hash symbols to the condition length. The deterministic bid is not

used directly to determine the auction winner. Instead, it is slightly perturbed by adding a

random noise to promote exploration of the classifier space.

The effective bid (EB) is computed by adding a random noise to the bids submitted by each

competing classifier using equation (4.3).

E i P i (rand(E I ⏟ (4.3)

Where, EBID is the effective bid factor used during simulation to limit the random perturbation

on the deterministic bid within a small range (10% for instance).

59

4.2.2.2 Fitness Proportionate Resource Sharing (FPRS). The learning system

continuously interacts with its environment through its detectors and effectors. It uses a feedback

about the impact of its action on the environment to learn from experience. The learning agent is

blind without a proper guidance by a reward signal. A trainer is therefore necessary to determine

whether the environmental modification was beneficial or detrimental. The reinforcement

program (RP) determines the rule's fitness by generating a signal in the form of a reward or

punishment. It determines the rule fitness and enables the system to learn from its environment

based on a reward signal that implies the quality of its action. If the whole learning system is a

water fall, the RP is the pipe that guides it to a point of interest. This work introduces a novel

niching scheme termed fitness proportionate resource sharing, given in equation (4.4), for the

formation of a viable default hierarchy.

ri(t
Si(t

∑ Sk(t
M(t

k

 (4.4)

Where, R is the total reward provided by the environment whose value is initialized once, M(t) is

the number of classifiers in the advocate list at iteration t, ri(t) is the fraction of the total reward

(R) that goes to classifier i at iteration t and Si(t) is the strength of classifier i at iteration t. The

constant reward provided by the external environment is shared proportionally among classifiers

in the advocate list.

4.2.2.3 Clearing House (CH). The CH is the part of the learning system that deals with

the modifications in strength of classifiers as the classifier system learns. All classifiers pay

existence tax and classifiers in the match set pay an additional overhead tax while classifiers in

the advocate list has to pay also the bid amount. Assuming correct decision is taken by the

system at iteration t, the strength of a classifier i in the advocate list at the next iteration is

governed by equation (4.5).

60

Si(t) Si(t)(Cext Coh Cbid) ri(t (4.5)

Where, Cext and Coh are the existence and overhead tax constants respectively, Cbid is the bid

constant, and Si(t) and ri(t) are the strength and reward for classifier i at iteration time t. A

different paying and bidding policy (where the specificity factor is used during the bid

computation to decide the winner but it is left out during the calculation of the classifier’s

payout) is followed in this work. As can be seen from equations (4.2) and (4.5), the pay out of a

classifier in equation (4.5) (i.e. Cbid*Si(t)) is different from the potential bid amount given in

equation (4.2) due to the specificity term used in bid computation.

Classifiers in [M] that are not in [AL], do not pay the bid and do not share a reward. Hence their

strength is governed by equation (4.6).

Si(t) Si(t)(Cext Coh) (4.6)

For classifiers in [P] that are not in [M], Coh, Cbid and ri(t) are all zero and equation (4.5) is

simplified as shown in equation (4.7).

Si(t) Si(t)(Cext) (4.7)

4.2.2.4 Genetic Algorithm (GA). The GA discovers new rules among a population of

candidate rules based on the experience of existing rules. It diversifies the population using

mutation and cross over operators. A roulette wheel selection method is used to select parents for

reproduction. The strength of new classifiers emerging from GA is initialized to a value that is

neither too high (so that they do not dominate experienced classifiers) nor too low (to make them

competent with the relatively more experienced classifiers in the system during auctions). In line

with previous research work (Homaifar et al., 1988; Workineh and Homaifar, 2011), the strength

of the new classifiers is initialized to a third of their parents’ strength. ther initialization

techniques (for instance initializing it to the average of the parents’ strength are also applied but

61

there is no significant difference in performance. Each GA operation brings two new classifiers

that replace classifiers with lowest strength in the existing population. Figure 4.5 shows the

interaction of the three major components of an LCS during the learning process when an

environmental input is detected.

Figure 4.5. A Block diagram of an LCS in learning mode.

First, the performance component selects classifiers in the population whose conditions

matched to the current input and forms the match set. Classifiers in the match participate in an

auction to take action. Once the winner is classifier is identified, the reinforcement component

provides a reward or punishment based on the action taken and the population is diversified by

discovering new rules using the discovery component.

62

4.3 Learning Cycle

The learning cycle of the system implemented in this work involves the following

sequences of computations at each iteration time.

1. Read an input from the environment.

2. Form the Match set [M] using all classifiers in the population [P] that match to the

current input.

3. Classifiers in [M] bid in an auction by submitting a proportion of their strength using

equation (4.3).

4. Declare a winner classifier based on highest effective bid submitted in step 3.

5. Form the advocate list [AL] out of classifiers in [M] proposing the same action as the

winner classifier’s action.

6. Execute action on the environment and possibly receive a reward (R).

7. If a reward is generated following the action in step 6, distribute the reward

proportionally using equation (4.4) among classifiers in [AL].

8. Update the strength of classifiers in [P] using equations (4.5) through (4.7) accordingly.

9. Discover two new rules by applying GA on [P]

10. Repeat the above steps until a stopping criterion is met.

4.4 Steady State Analysis

LCSs are generally complex stochastic systems and a complete mathematical modeling

of the learning dynamics is almost impossible even for the simplest scenario of a stimulus

response LCS. To get a thorough understanding of the learning system, we presented a detailed

simulation results that show the population dynamics, the performance accuracy and the

variation of the strength at each epoch for learning Boolean function mapping in the multiplexer

63

problem. An epoch stands for one complete presentation of the environmental inputs to the

system. The main purpose of our work is to introduce a novel sharing scheme that leads to the

formation of a viable default hierarchy in LCS. To come up with an exhaustive mathematical

formulation for predicting the emergence of subpopulations, the composition of the population at

equilibrium and quantitative characterization of the maintenance of niches under the selection

pressure of GA is not the primary intent of this work. The authors in (R. Smith et al., 1993)

showed the impact of GA selection on the population composition under a fitness sharing

scheme. Horn and Goldberg (Horn and Goldberg, 1996) also made an analysis of the niche

dynamics for a much simpler LCS system (assuming the existence of only two niches and every

classifier has equal specificity). In our case, classifiers can have different specificity and no

assumption is made on the number of niches and the reward share of classifies is dependent on

the current size of the advocate list, which we do not have any a priori knowledge. Under these

circumstances, analysis of the niche dynamics for such a complex scenario is a daunting task.

But to have a further insight on the variation of the strength of classifiers under the

selection pressure of GA, we made some simplifying assumptions and deduce mathematical

expressions that can predict the steady state behavior of the total strength of subpopulations. It is

interesting to express the impact of the various forms of taxes, the bid and the shared reward

quantitatively on the steady state strength of classifiers in the population. We made an

assumption that a default hierarchy will emerge at some epoch in the learning process and take

control of the system. In other words, our steady state analysis gives the variation of the total

strength of subpopulations (default and exception classifiers) disregarding the impact of other

classifiers that are not part of the hierarchical set. The validity of this assumption is in fact

experimentally proved by the series of simulation results conducted.

64

Also, as it is difficult to trace a specific classifier in the population and for the sake of

simplicity, we treated classifiers in group and the total strength of the group is considered during

the analysis. For instance, instead of dealing with each exception classifier separately, the whole

set is treated as one group and the default set as another group. Two things are valid under this

assumption. First, every group (the default set and the exception group) receives a reward at

every other iteration. Second, considering classifiers in group avoids the dependency of strength

modification on the size of the current advocate list (since the fraction term in the reward

allocation adds up to unity for the group).

The default classifier matches to every input and is always subject to (Cext and Coh). It is

correct only half of the time and hence would possibly receive a reward every other iteration.

The other half of the inputs is covered by the exception classifiers. In effect, the exception group

would receive a reward every other iteration for the cases where the default classifier is wrong.

Now, let t be an iteration time where there is no reward for the default classifier. This

means at t+1, the default expects a reward and so on. The same is true for the exception group.

Let K be the sum of all taxes and the bid amount, K1 be the sum of the existence and overhead

tax and K2 be the existence tax, Mt the size of the advocate list at iteration t, SDG(t) represents the

total strength of all instances of the default classifier at iteration t, SEG(t) represent the total

strength of all classifiers in the exception group at iteration t.

4.4.1 Default classifier. The strength of the i
th

 default classifier (SDi) at iteration t+1 can

be expressed in terms of its strength one iteration before using equation (4.8).

S (t) S (t)()
S (t)

∑ S (t)
Mt

 (4.8)

Considering all instances of the default classifier in group, we know that the total reward

R is distributed among different instances of the default and hence the fraction term adds up to

65

unity. Hence, the total strength for the default group at iteration t+1 can be expressed in terms of

the total strength one iteration earlier using equation (4.9). Similarly, the strengths at the t+2 and

t+3 iterations are given by equations (4.10) and (4.11) respectively.

S (t) S (t)() (4.9)

S (t) S (t)()

 S (t)()() (
(4.10)

A reward comes at the (t+3)
th

 iteration and the total strength at the (t+3)
th

 iteration is given by

equation (4.12)

S (t) S (t)() (4.11)

Back substituting the value of S (t+2) from equation (4.10) in to equation (4.11)

S (t) S (t)()() (4.12)

At steady state, we expect the following equations to hold.

S (t) S (t) S ss

S (t) S (t) S ss

(4.13)

Solving these equations one at a time, we get equations (4.14) and (4.15).

S (t) S (t)()() ()

 S ss
(()()) ()

S ss

(4.14)

And the second steady state strength for the default group is given by equation (4.15).

S (t) S (t)()()

S ss

(4.15)

66

As the reward comes to the set at every other iteration, the steady state total strength of

the default group oscillates between these two values. For a very small K1, the two values are

close to each other.

4.4.2 Exception classifiers. Following the same approach and considering the exception

classifiers as one group, we can also derive the steady state equations for the total strength of

exception classifiers.

SEi(t)

n

n SEi(t)(-)

n S (t)(-)

S (t

∑ S (t
Mt

 (4.16)

Where SEi(t) is the strength of an exception classifier i at the t
th

 iteration, n is the number of

select bits in the input (i.e. 2 for 6 mux, 3 for 11 mux etc). Again, considering all exception

classifiers in group, the fraction term in the equation adds up to unity and we get simplified

expression for the total group strength given in equation (4.17).

There are a total of 2
n
 classifiers in the exception group and only one receives a reward at

a time. Hence the total strength for the group at the (t+1)
th

 iteration is given by equation (4.17).

SE (t)

n

n SE (t)(-)

n SE (t)(-) (4.17)

The first term on the right in equation (4.17) accounts for exception classifiers in the

group that do not match to the given input, and the second term accounts for instances of the

exception classifier that matches to the current input. Of a total of 2
n
 exception classifiers in the

group, instances of only one exception classifiers matches to a given input and will be part of the

advocate list and incur all forms of tax and bid.

There is no reward at (t+2) and hence the total strength is given by equation (4.18).

SE (t) SE (t)() (4.18)

And the total strength at (t+3) is governed by equation (4.19).

67

SE (t)

n

n SE (t)()

n SE (t)() (4.19)

After substitution and rearranging terms in equation (4.19), the group strength for the exception

classifiers at the (t+3)
th

 iteration is given by equation (4.20).

SE (t) SE (t) (

n

n ()

n ()()) (4.20)

Again at steady state,

SE (t) SE (t) SE ss

SE (t) SE (t) SE ss

(4.21)

Solving the first equality in equation (4.21) for steady state value, we get

SE (t) (

n

n SE (t)()

n SE (t)()) () (4.22)

After substitution and rearranging terms in equation (4.22), we get

()

()()

 (4.23)

And from the second equality in equation (4.21), we get equation (4.24).

SE (t) SE (t) (

n

n ()

n ()()) (4.24)

After solving and rearranging terms in equation (4.24), the second steady state value is given by

equation (4.25).

SE ss

n

n ()

n ()()

(4.25)

The steady state value of the total strength of exception classifiers oscillates between the

two values given in equations (4.23) & (4.25). Usually, the existence tax is very small

(i.e. -) and hence the two values are very close to each other. The optimum values of the

68

simulation parameters are given in Table 4.1. The mutation and crossover probabilities are varied

during the experiments and the best results are obtained for all multiplexer problems using the

values given in the Table 4.1.

Table 4.1

Simulation parameters with their optimum values

Parameter Value Meaning

6-mux 11-mux 20-mux

Pop size 200 400 800 Number of classifiers

Cext 0.001 0.001 0.001 Existence tax

Coh 0.005 0.005 0.005 Overhead tax

Cbid 0.1 0.1 0.1 Bid coefficient

Px 0.65 0.65 0.65 Probability of crossover

Pm 0.008 0.008 0.008 Probability of mutation

EBID 0.1 0.1 0.1 Ebid constant

69

CHAPTER 5

FPN for Dynamic Clustering

In this era of huge amount of data, clustering has a pivotal role in data mining with

innumerable applications in a wide range of fields. The goal of clustering is to partition data in to

categories or clusters so that objects in the same cluster are similar in a certain type of measure

and different from those of other clusters (Nasraoui and Krishnapuram, 2000; Streichert et al.,

2004; Zhang et al., 2006). Generally, there are two broad categories of clustering techniques:

hierarchical and partitional. Hierarchical clustering techniques can be further divided in to

agglomerative (begins with each entry as a cluster center and proceeds successively merging

smaller clusters in to larger one) and divisive analysis (starts with one big cluster and proceeds

by splitting the larger cluster). On the contrary, the partitional clustering techniques directly

decompose the data set in to several disjoint clusters based on a defined criterion. K-mean

clustering is one of the most known partitional clustering techniques (Sheng et al., 2004). This

chapter explores the application of the proposed niching technique for clustering using both

synthetic and real data.

The intent here, however, is not to compare its performance with or claim an

improvement over a specific clustering algorithm. We want to demonstrate how FPN can be

applied for clustering of multi-dimensional data. Most clustering algorithms rely on a priori

knowledge (e.g. number of clusters, the distribution of the data etc) on the data. For instance, the

K-mean algorithm assumes a predetermined number of clusters and its performance is dependent

on the cluster initialization and as a result it may get trapped in local optima (Sheng et al., 2004).

The simulation results show that the developed niching technique can be applied for dynamic

clustering when such a priori information is not available ahead. FPN utilizes the robust global

70

search ability of GA to dynamically locate cluster centers without making any a priori

assumption about the distribution of the data.

5.1 Mapping Multi-modal Optimization to Cluster Discovery

As emphasized in earlier chapters, the use of niching enables GAs to evolve a diverse set

of populations and hence making them suitable to discover multiple optima in the fitness

landscape. With proper formulation of the objective function, a clustering problem can be

mapped in to the optimization of a multi-modal function with unequal peaks. The location of the

unequal peaks corresponds to the cluster centers in the feature space. The highest peak values of

the fitness landscape represent dense cluster areas while the lower peaks map to sparse cluster

centers. The number of peaks of the multi-modal function corresponds to the number of cluster

centers. The task of the GA is then to search for the location of optimum points which represent

cluster centers. The solution space for possible cluster centers consists of n-dimensional

prototype vectors. For clarity and computational speed, a real valued GA implementation is

preferred over binary GA (Giráldez et al., 2003). Hence, an individual in the population is a

sequence of n real valued numbers representing a candidate cluster center.

Figure 5.1 shows how a multimodal function of one variable can be mapped in to a

clustering problem in 1-dimensional feature space. The locations of the optimum points in the

multimodal fitness landscape (C1 to C5 in the figure) represent the values of the cluster centers.

The variation in fitness values of the five peaks accounts for the distribution of the data (i.e.

highest peaks represent dense areas in the data and lower peaks correspond to clusters of sparse

data). Similarly, a higher dimension multimodal function can be mapped in to clusters of a

higher dimensional feature space data. For instance, optimization of a two dimensional multi-

modal function can be mapped in to finding cluster centers in a 2-D feature space.

71

Figure 5.1. Mapping of a multimodal optimization problem to a clustering problem in 1-D.

Figure 5.2 shows a scenario where a two dimensional multimodal objective function

defined over the data points can be map to clustering of data in 2-D feature space. For a one to

one correspondence between the locations of the optimum points and cluster centers, the

objective function needs to have local optima at or near the cluster centers. A density based

objective function satisfies this criterion (Chang et al., 2010; Duan et al., 2007).

Figure 5.2. Mapping a 2-D multimodal function in to a clustering problem in 2-D.

C5 C4 C3 C2 C1

Peaks at cluster centers

72

5.2 Formulation of Fitness Function

It is generally assumed that dense areas of a feature space are identified as clusters.

Defining a fitness function that takes this in to account is very crucial to the success of GA for

discovering actual cluster centers in the data. Density based fitness functions are commonly used

in literatures (Duan et al., 2007; Sander et al., 1998; Sheng et al., 2004; Zhang et al., 2006). In

this work, a density based fitness function similar to the one given in (Chang et al., 2010) is

applied. Unlike the fitness function defined in (Duan et al., 2007; Sander et al., 1998), the

formulation of the fitness function used in our implementation does not require a fixed value of

the neighborhood radius and the size of a cluster.

Let X={x1, x2 xN} represent a D-dimensional data and K be the size of the population

which represents the initial number of clusters that prevail in the data. The goal is to find all

cluster centers (Ci) that maximize the total similarity given by equation (5.1).

 (C) ∑∑ ((
‖ i‖

))

N

i

 (5.1)

Where is a constant that determines the shape of the density function, C= (C1, C2, … CK)

represent the cluster centers, N is the number of instances and µ and are the mean and variance

of the data and are given by equation (5.2). The value of varies with the data and its optimum

value is determined using correlation comparison algorithm given in (Yang and Wu, 2004). The

mean and the variance for the data are constant and hence computed only once before the start of

the evolution.

∑ ‖x ‖

 N

N

∑

(5.2)

73

Each individual in the population represents a candidate cluster center. The population is

initialized to cluster candidates randomly selected from the data. The fitness of an individual

(candidate cluster center) is computed using equation (5.3).

f(c) ∑ (e

‖x c‖

N

 (5.3)

An individual in a dense area (surrounded by many data points in the search space) will

have a higher fitness value. Initially, the number of clusters is equal to the population size.

Hence, the goal of the niching technique is to evolve the population in to stable subpopulations

that converge at the location of the cluster centers. In other words, if K actual cluster centers

prevail in the dataset, we expect the emergence of K stable subpopulations at the end of

evolution. The niche masters (the individual with the highest fitness in the group) of each

subpopulation represents the final cluster centers.

5.2.1 Crossover operator. The crossover operator enables the GA to exploit already

discovered candidate solutions (i.e. refining solutions). High crossover rate can lead to premature

convergence, for instance getting trapped in a local optimum. If two parents (c1 and c2) are

selected using a roulette wheel selection mechanism, then the two offsprings (c’1 and c’2)

generated by the crossover operator are determined using equation (5.4).

 ()

 ()
(5.4)

Where, r is a uniformly distributed random number over [0, 1].

5.2.2 Mutation operator. The mutation operator facilitates exploration. It helps the GA

to get out of a local optimum and discover new regions in the search space. High mutation rate is

undesired as it turns the GA in to a random search. Hence the mutation rate is usually set to a

74

very small value. A uniform neighborhood mutation is applied at each chromosome with a

probability of pm to generate the mutated value of a candidate cluster at the corresponding

location. Let d
q

min and d
q
max represent the minimum and maximum value of the data along the q

th

dimension respectively. Then the mutated value (d
q

m at the q
th

 dimension of a cluster center with

value d
q
 is given by equation (5.5).

 (

) (5.5)

Where, rm and R are uniformly distributed random numbers over the interval (0, 1) and [-1, 1]

respectively.

The simulation is repeated R times using different seeds for the random number generator

and the mean and standard error are computed using equations (5.6) and (5.7).

〈 〉

∑ , ,…

(5.6)

E(t) √

∑ , 〈 ()〉

 (5.7)

Where, v(t) and E(t) are the mean and standard error at generation t, Wr,t is the number of niches

discovered at the r
th

 experiment and t
th

 generation, G is the number of generations, R is the

number of times the simulation is repeated.

5.3. Algorithmic Description

The FPN based clustering algorithm has the following computational steps. To

counterbalance the effect of randomness in GA, the experiment is repeated 30 times using

different seeds for the random number generator. The averages of these 30 runs are taken as the

final cluster centers of the data.

1. Initialize the population using N randomly selected instances from the data set.

2. Evaluate the raw fitness of each individual in the population using equation (5.3).

75

3. Apply the dynamic niche identification algorithm (given in chapter 3) to identify the

number of niches that prevails in the population.

4. Compute the shared fitness of individuals belonging to the same niche using FPN.

5. Apply real valued GA crossover and mutation given in equations (5.4) and (5.5).

6. Go to step 2 if the stopping criteria is not reached, otherwise proceed to step 7.

7. Select the niche masters of the population as a final cluster center and exit.

Figure 5.3 shows the distribution of the data and the population before the start and at the

end of evolution. The figure shows a scenario where the size of the data is 40, population size is

20 and four clusters exist. The initial population is randomly selected from the data and the niche

masters of the final population are picked as cluster centers. This particular setup demonstrates

how the FPN based clustering algorithm evolves the population from a random initial state to a

final state that is uniformly distributed among the cluster centers (i.e. the population divides

evenly in to all clusters as expected ideally).

Figure 5.3. The distribution of the population at the start and end of evolution.

Data Initial Population Final Population

 Niche Master

 Individuals

76

5.4. Simulation Results

To test the performance of the algorithm, we used both synthetic and actual data for

clustering. The real data is obtained from the machine learning laboratory of the University of

California at Irvine (www.ics.uci.edu/~mlearn/). Three real clustering data sets (iris, seed and

skin) and two synthetic (one with well distributed and another with a sparse data) are used for

testing the performance of FPN. The Fisher iris data set has a total of 150 instances of three

different types of flowers (class setosa, class versicolor and class virginica). There are 50

instances per class and each instance has four attributes: sepal length, sepal width, petal length

and petal width. The seed data set has 210 instances with 7 attributes: area, perimeter,

compactness, length of kernel, width of kernel, asymmetry coefficient and length of kernel

groove. The data set consists of kernels belonging to three different varieties of wheat: Kama,

Rosa and Canadian, each containing 70 instances. The third data set used is the skin

segmentation data set. This data set is collected by randomly sampling the R, G, B values from

face images of various age, race and gender groups. The total sample size is 245,057 and it has

two classes: skin and non-skin samples.

Figure 5.4 shows a data set that consists of 16 clusters. As can be seen from the same

figure, the FPN based clustering algorithm discovered all the 16 clusters. In Figure 5.4 and

Figure 5.5, the red squares represent the scatter plot of the data, the black circles represent the

evolved GA population and the blue shaded circles refer to the niche masters in the final

population. The number of niches is equal to the number of clusters that prevail in the data and

their value represents the niche masters (cluster centers). This data set has well separated clusters

and is relatively easy to identify the cluster centers. For faster convergence at the cluster

locations, the population is initialized from the data.

http://www.ics.uci.edu/~mlearn/

77

Figure 5.4. Synthetic data with well separated clusters.

Figure 5.5 shows a data set with a variable density of distribution (some regions are

highly dense and others are sparse). Since the fitness function is defined based on density,

individuals close to highly dense areas will have high fitness, while those close to less dense

areas will have lower fitness. From the FPN perspective, this is equivalent to optimizing a

multimodal function with variable peaks. As can be seen from the final population distribution in

Figure 5.5, FPN discovers all the nine clusters in the data despite a significant difference in the

density of the clusters. This is due to the fact that FPN is density unbiased as it considers both

high and low peaks of the multimodal function equally important. A GA search based on

traditional fitness sharing favors dense areas and as a result there is a high chance of missing

clusters with sparse data. This also makes the FPN based clustering less sensitive to outlines in

the data.

-1 0 1 2 3 4 5 6 7 8
-1

0

1

2

3

4

5

6

7

8

9

10

Data

Population

Cluster Centers

78

Figure 5.5. A synthetic data with less dense clusters.

The remaining data sets (iris, skin and seed) are higher dimensional and cannot be

visualized in 3-D. Instead, a simulation result for the average number of niches and the standard

error is depicted in Figure 5.6 and Figure 5.7 respectively. The number of niches corresponds to

the number of cluster centers in the data. As can be seen, FPN discovers 2 clusters for the iris

and skin data set and 3 clusters for the seed data set. The experiment is run 30 times and the

number of niches discovered at each generation is averaged over the size of the experiment. The

standard error measures the deviation of the number of niches (cluster centers) from the average

number of niches as generation goes on. A constant value indicates that there is no variation in

the number of niches discovered at each generation.

There is a high variation on the number of clusters discovered for the iris data set (see

Figure 5.7) as compared to the other data sets. This is so, because the iris data contains only two

linearly separable classes: one of the clusters contains Iris setosa, while the other cluster contains

both Iris virginica and Iris versicolor. For the other data sets, the standard error or deviation is

-1 0 1 2 3 4 5 6 7 8
-3

-2

-1

0

1

2

3

4

5

6

7

Data

Population

Cluster Center

79

constant, in accordance with the average number of clusters discovered by the FPN algorithm for

those data sets as shown in Figure 5.6.

Figure 5.6. The average number of clusters discovered using FPN for the five data sets.

Figure 5.7. The standard error plot for two synthetic and three real datasets.

0 50 100 150
0

2

4

6

8

10

12

14

16

18

20

N
um

be
r

of
 N

ic
he

s

Generations

Well Separated Data

Sparse Data

Iris Data Set

Seed Data Set

Skin Data Set

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

Er
ro

r

Generations

Well Separated Data

Sparse Data

Iris Data Set

Seed Data Set

Skin Data Set

80

CHAPTER 6

Results and Discussion

This chapter has two major sections. The first section discusses the simulation results for

FPN technique introduced in chapter 3 of this dissertation. A comparison with other niching

schemes is made using benchmark multimodal functions from literatures. The second section

extends the application of the niching technique developed for evolving hierarchical cooperation

in classifiers. A comparison on whether other existing sharing techniques can lead to the

formation of default hierarchy in LCS and whether they can sustain it after it has emerged, is also

made in this section.

6.1. Results for FPN

The FPN scheme is applied for the optimization of multimodal functions both with equal

and unequal peaks and its performance is compared with the traditional fitness sharing scheme.

Simulation is carried out with various population sizes to investigate how the niching techniques

behave as the population size varies. The simulations are run 20 times and the average values are

plotted. As the goal of a niching technique is to discover multiple peaks in parallel, one possible

way of measuring system performance is displaying the number of peaks discovered as the

search process goes on. In Figure 6.1, a performance comparison for a multimodal function

having five equal peaks (Fa(x)) is shown. As can be seen from this figure, there is no significant

difference in performance between the two algorithms for this function. For instance, for a

population size of 50, both algorithms discovered almost all the five peaks (see Figure 6.1). This

result is expected as FPN essentially degenerates in to traditional fitness sharing for multimodal

functions having equal peaks. However, for multimodal functions having unequal peaks, there is

a significant difference in performance (see Figure 6.2 and Figure 6.3). The first is for a function

81

with a small fitness ratio among the different peaks (Fb(x) function). For this scenario, FPN has a

reasonably fair performance even at a small population size. For a population size of 30, the

traditional niching scheme discovered nearly 75% of the peaks whereas FPN discovered about

95% of the peaks on average. As the population size increases, there is an improvement in

performance of both techniques. For a population size of 50, both algorithms discovered almost

all of the peaks. In the simulation results (both tables and figures), TFS refers to the traditional

fitness sharing scheme, FPN stands for the fitness proportionate niching and PS is the population

size.

Figure 6.1. Number of peaks discovered for Fa(x) out of a total of 5 peaks.

Figure 6.3 displays the simulation result for Fc(x) for various population sizes. As can be

seen from the first subplot in Figure 6.3, the traditional fitness sharing technique discovers only

the highest peak (only 1 peak out of a total of 5 peaks) while FPN discovered almost all of them.

0 20 40 60 80 100 120 140 160 180 200
2

2.5

3

3.5

4

4.5

5

N
u

m
b

er
 o

f
P

ea
k

s

Generations

TFS PS=30

FPN PS=30

TFS PS=50

FPN PS=50

82

Figure 6.2. Number of peaks discovered for Fb(x) out of a total of 5 peaks.

Figure 6.3. Number of peaks discovered for Fc(x), out of a total of 5 peaks.

0 20 40 60 80 100 120 140 160 180 200
2.5

3

3.5

4

4.5

5

N
u

m
b

er
 o

f
P

ea
k

s

Generations

TFS PS=30

FPN PS=30

TFS PS=50

FPN PS=50

TFS PS=80

FPN PS=80

0 50 100 150 200
1

2

3

4

5

N
u

m
b

er
 o

f
P

ea
k

s

Pop Size=30

TFS

FPN

0 50 100 150 200
2

2.5

3

3.5

4

4.5

5

Pop Size=50

TFS

FPN

0 50 100 150 200
2.5

3

3.5

4

4.5

5

N
u

m
b

er
 o

f
P

ea
k

s

Generations

Pop Size= 100

TFS

FPN

0 50 100 150 200
2

2.5

3

3.5

4

4.5

5

Pop Size= 150

Generations

TFS

FPN

83

The results for Fc(x) show how the traditional niching technique is sensitive to the

difference in fitness of the peaks. To discover all the peak locations, it requires a very large

population size which depends on the fitness ratio at the highest and lowest peaks. The

performance dependency of TFS on the population size was discussed in chapter 3. In this

particular simulation, the traditional niching technique requires a population size of 150 to

discover all the peaks as compared to 50 or lower population size for the FPN scheme.

Figure 6.4 and Figure 6.5 demonstrated the performance of FPN and TFS for the more

complex multimodal functions (Fd(x) and Fe(x)). Fd(x) has ten unevenly distributed equal peaks

whereas, the shekel foxhole function (Fe(x)) has 25 uniformly distributed equal peaks. As can be

seen in the results, FPN outperformed TFS in discovering the peaks.

Figure 6.4. Number of peaks discovered for Fd(x), out of a total of 10 peaks.

0 50 100 150 200
6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

N
um

be
r o

f P
ea

ks

Pop Size=50

TFS

FPN

0 50 100 150 200
8

8.2

8.4

8.6

8.8

9

9.2
Pop Size=80

TFS

FPN

0 50 100 150 200
8.5

8.6

8.7

8.8

8.9

9

9.1

N
um

be
r o

f P
ea

ks

Generations

Pop Size= 100

TFS

FPN

0 50 100 150 200
8.9

9

9.1

9.2

9.3

9.4

9.5

Pop Size= 120

Generations

TFS

FPN

84

Figure 6.5. Number of peaks discovered for Fe(x), out of a total of 25 peaks.

Another way of measuring the performance of a search technique is to observe the

population distribution along the various peaks. Tables 6.1 and 6.2 show the distribution of the

population among the various peaks for Fb(x) and Fc(x) test functions. The values portrayed in

the tables are the average number of individuals at each of the five peaks over 20 runs.

Table 6.1

Population distribution at the five different peaks for Fb(x)

PS Peak1 Peak2 Peak3 Peak4 Peak5

30

TFS 10 9.7 7.1 3 0

FPN 7.3 6.8 6.7 5.3 3.6

50

TFS 15.9 14.4 10.9 5.7 2

FPN 11 10.9 10.4 9.7 7.3

80

TFS 24.6 23.1 17 10.3 4.6

FPN 18 16 16 15 15

50 100 150 200
0

5

10

15

20

25

N
um

be
r

of
 P

ea
ks

Pop Size=50

TFS

FPN

50 100 150 200
0

5

10

15

20

25
Pop Size=80

TFS

FPN

50 100 150 200
0

5

10

15

20

25

N
um

be
r

of
 P

ea
ks

Generations

Pop Size= 100

TFS

FPN

50 100 150 200
0

5

10

15

20

25
Pop Size= 120

Generations

TFS

FPN

85

As can be seen from both tables, FPN tends to distribute the population among the

various peaks uniformly irrespective of the fitness difference among the peaks. In Table 6.2, for

instance, TFS discovers only one of the five peaks using a population size of 30. But FPN

discovered all the five peaks using the same population size.

Table 6.2

Population distribution at the five different peaks for Fc(x)

PS Peak1 Peak2 Peak3 Peak4 Peak5

30 TFS 29.8 0.2 0 0 0

FPN 7.9 6.9 6.3 5.5 3

50 TFS 47.1 2 0.7 0.1 0

FPN 12.1 10.7 9.7 9.3 7.5

100 TFS 88 5.7 4.5 1.4 0.2

FPN 21.6 20.6 20 19.9 17.1

150 TFS 128.4 9.8 7 3.5 1.3

FPN 31.9 31.5 30.5 28.9 26.9

6.2. Results for LCS

For the sake of comparing results with previous research work, the proposed algorithm

was applied to the multiplexer problem (Wilson’s oole function . Simulations were done on the

6-multiplexer problem and to show the scalability and consistency of the algorithm, the

experiment is extended to higher multiplexer problems (11 & 20 multiplexers). For all

simulations, classifiers were initialized to an initial strength of 100. The payoff for a correct

decision (R) by the system was set to 1000 while absence of a reward was considered as

86

punishment for a wrong response. The specificity value for the default classifier was set to 0.1 in

the case of 6-mux, 0.08 for 11-mux and 0.01 for the 20-mux. The values for the initial strength,

reward and specificity are initialized in accordance with previous research work. The values for

the other parameters are given in Table 4.1.

6.2.1 Performance evaluation. The performance of the learning system is measured by

the accuracy of its response to a given input. Figure 6.6 shows the percentage of correctly

identified environmental inputs by the system and the solution count as a function of the number

of epochs. The upper curve represents the percentage of correct decision by the system and the

lower curve is the percentage of the population that contains the perfect solution set. For the 6-

mux problem, an epoch stands for one complete presentation of the environmental inputs to the

system. So an epoch here represents the average system response on the past 64 inputs. In

general, for an n-bit input representation, there are a total of 2
n
 different environmental inputs to

the system. All simulations (for all 6, 11 & 20- multiplexers) were carried out 20 times using

different seeds for the random number generator and the averaged results are portrayed.

As can be seen from Figure 6.6 , the percentage accuracy of the system averaged over the

20 runs is well above 95% after the 100
th

 epoch. The solution count is the percentage of

population that contains instances of the perfect solution set (refer to Figure 4.2, left column)

averaged over the size of an epoch. For instance, at the 350
th

 epoch 90% of the population

contains instances of the perfect solution. The high percentage accuracy and solution count

achieved is an indication of how well the system learns its environment. The same simulation

was done using a half population size (100 classifiers) and resulted in nearly the same level of

accuracy but with a lower percentage of solution count (85%). The effect of varying the mutation

and cross over rates was also investigated.

87

Figure 6.6. System performance for the 6-multiplexer problem.

Figure 6.7 displays the average bid amount of winner classifiers versus the number of

epochs for the 20 runs. The bid interaction helps to get an insight on how the strength of the

population varies with time. It gives a quantitative clue on the steady state strength of classifiers

that influence the system’s decision. At the start of the iteration, the population is more likely to

be packed with specific classifiers. This is so because in a ternary alphabet system with a random

initialization, there is a higher chance (2/3
rd

) for each condition bit to be initialized to a non-hash

symbol. But as iteration goes on, the hierarchical set begins to dominate the population resulting

in a decline of the bid amount (note that the bid amount is proportional to the specificity of the

classifier). This trend is clearly evident from the plots in Figure 6.7, Figure 6.10 and Figure 6.13

having a high pick at the start and declining abruptly until it finally settles to some steady state

value.

0 50 100 150 200 250 300 350 400 450 500
0

10

20

30

40

50

60

70

80

90

100

Number of Epoches

S
o
lu

ti
o
n
 C

o
u
n
t,

 A
c
c
u
ra

c
y
 (

%
)

% Correct

Solution Count

88

Figure 6.7. The average bid amount of winner classifiers at each epoch for 6-mux.

To check whether the system has evolved to a default hierarchy and its ability to sustain it

once formed, a tabular result showing a sorted list of classifiers in the final population with their

creation time and numerosity is displayed in Table 6.3 to Table 6.7 for the three multiplexer

problems. The entries in the columns (C, A, S, NC and CT) refer to the condition, action,

maximum strength, numerosity and the creation time of that specific classifier respectively. The

tables show the final population statistics for one particular run.

For the 6-mux, a perfect default hierarchy has been achieved 19 (9 of them with a default

of action 0 and the remaining 10 with a default of action 1) times out of a total of 20 runs. In one

of the 20 runs, a default hierarchy was also attained but one of the 4 perfect solutions was

missed. Table 6.3 shows a scenario where a default of action 0 and the 4 perfect solutions of

action 1 dominating the total population. As can be seen from the number of copies in the

column of the table, these classifiers comprise 96% of the population (192 instances out of a total

population of 200 classifiers).

0 50 100 150 200 250 300 350 400 450 500
10

20

30

40

50

60

70

80

90

Number of Epoches

A
v
e
ra

g
e
 B

id
 H

is
to

ry

89

Table 6.3

A sample pattern of the final population for 6-mux with default of action of 0

No C A S NC CT

1 001### 1 2959 29 5

2 10##1# 1 1935 32 3795

3 11###1 1 1310 33 4330

4 01#1## 1 927 33 2460

5 ###### 0 471 65 1315

6 ###0## 0 193 1 23600

7 #####0 0 184 1 3695

8 ##0### 0 175 1 18655

9 #0##1# 1 115 1 24475

Table 6.4 displays the same statistics for a default of action 1 and the other 4 perfect

solutions of action 0 case. Again, these hierarchical set contains 193 instances of the total

population. The creation time (CT column in the tables) gives an insight on the time of

emergence of a hierarchical set and whether the learning system was able to maintain it. It was

measured in terms of iteration, not epoch. A creation time of 0 indicates that particular classifier

was part of the initial population. In one iteration, an input was presented to the learning system

and its response to it was evaluated. In 500 epochs, there are a total of 32000 (i.e. 500*64)

iterations. The time of formation of the default hierarchy can be inferred by looking at the

creation times of individual classifiers that comprise the hierarchical set. In Table 6.3 for

instance, considering the top 5 classifiers that comprise a default hierarchy, the highest creation

90

time value is 4330 (nearly at the 9
th

 epoch), which means that the latest classifier that joined the

hierarchical set is “ ### / ”. And from Table 6.4, the hierarchical set has emerged at iteration

9340 (nearly at the 19
th

 epoch) and survived afterwards. In both cases, the default classifier has

the highest numerosity indicating that it was well protected and flourished.

Table 6.4

A sample pattern of the final population for 6-mux with default of action of 1

No C A S NC CT

1 11###0 0 3087 25 3335

2 01#0## 0 1419 28 0

3 10##0# 0 1265 35 9340

4 000### 0 481 39 6255

5 ###### 1 445 66 1490

6 ####1# 1 190 1 21690

7 ##1### 1 189 1 0

8 ###1## 1 185 1 1575

9 #####1 1 182 1 24290

To get a more in depth insight, Figure 6.8 shows the distribution of the population, the

variation in strength and the potential bid amount as the learning process continues. Through

guidance of the system using a fitness proportionate resource sharing scheme and discovery of

new rules by the GA, the learning process evolves the population from a random start to three

big subpopulations (the default hierarchical set, the perfect classifiers that are not part of the

hierarchy and the rest). In the sub plots the labels HS PSN and ‘ thers’ stands for the default

91

hierarchical set, perfect solutions that are not part of DHS (for 6-mux for instance, these are

instances of any of the four classifiers that are not part of the hierarchical set), and classifiers that

are neither in the DHS nor in the PSND respectively. The DHS emerges only when the default

and all other exception classifiers emerge in the population. Before the formation of the DHS,

the exceptions are part of the PSN and the default is part of the ‘ thers’ group. The ‘ thers’

subpopulation group contains a broad variety of classifiers (classifiers with no or several hashes

which can be correct or wrong) and usually expected to have a larger size at the start of the

epoch for a random initialization.

Figure 6.8. Subpopulation distribution for 6-mux using a FPRS scheme.

0 100 200 300 400 500
0

50

100

150

200

N
u

m
b

er
 o

f
C

la
ss

if
ie

rs
 (

A
v

g
.)

(a)

DHS

PSND

Others

0 100 200 300 400 500
0

1

2

3

4

5

6
x 10

4

T
o

ta
l

S
tr

en
g

th

(b)

Default Set

Perfect Set

Others

0 100 200 300 400 500
100

200

300

400

500

600

700

A
v

er
ag

e
S

tr
en

g
th

(c)

Epoches

Default Set

Perfect Set

Others

0 100 200 300 400 500
0

5

10

15

20

25

30

35

A
v

er
ag

e
B

id
 A

m
o

u
n

t

(d)

Epoches

Default Set

Perfect Set

92

Figure 6.8 (a) shows the distribution of the population among these three subpopulations.

The plot shows at what epoch the hierarchical set has emerged and whether the learning system

is able to maintain it for long. As expected, both DHS and PSND are very small at the start and

the DHS starts to dominate the population as the learning process continues. Figure 6.8(b) and

Figure 6.8(c) show how the total and average strength of classifiers in the default, perfect and

‘ thers’ set vary with epoch. The ‘ efault Set’ contains all instances of a default classifier and

the ‘Perfect Set’ includes all perfect classifiers in the population. Here, we are particularly

interested to make a comparison of the strength between the default and exception classifiers. As

can be seen from the graph, the perfect set has maintained a higher strength as compared to the

default rule. A difference in strength between the default and the exception classifiers helps to

attain a steady state bid separation between these sets (see Figure 6.8(d)) and hence allowing the

exception classifiers to protect the default when it is wrong. Similar simulations are also done for

11 and 20 multiplexers (see Figure 6.11 and Figure 6.14).

6.2.2 Scalability and robustness. For testing the scalability and robustness of the

proposed niching scheme, a similar simulation was also conducted on more complex and large

input problems (11 & 20 multiplexers). For these multiplexers, the number of input combinations

are very large (2
11

 for 11-mux and over a million for 20-mux, 2
20

). Hence, considering all the

inputs at each epoch would be computationally cumbersome. Instead, only a fraction of

randomly selected inputs were used out of the total possible combinations of environmental

inputs at each epoch. For instance, for the 11-mux, an epoch represented only 512 (25% of the

inputs) iterations or input presentations and the simulation results are shown in Figures 6.9 to

6.11. The upper curve in Figure 6.9 represents the percentage of correct decision by the system;

the lower curve is the percentage of the population that contains the perfect solution set.

93

Figure 6.9. System performance for the 11-mux using FPRS scheme.

A bid history plot for the winner classifiers is displayed in Figure 6.10. As can be seen,

the bid history settles to a steady state value after some iteration. This is expected because the bid

amount is a fraction of the strength of winner classifiers which converges to a certain steady state

value after sufficient iterations (see steady state analysis section of Chapter 4).

Figure 6.10. The average bid amount of winner classifiers at each epoch for 11-mux.

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

Number of Epoches

S
o
lu

ti
o
n
 C

o
u
n
t,

 A
c
c
u
ra

c
y
 (

%
)

% Correct

Solution Count

0 50 100 150 200 250 300
10

20

30

40

50

60

70

80

Number of Epoches

A
v
e
ra

g
e
 B

id
 H

is
to

ry

94

Figure 6.11. Subpopulation distribution for 11-mux using FPRS scheme.

A typical scenario showing the population statistics for the top 10 classifiers at steady

state is shown in Tables 6.5 & 6.6. As can be seen from these tables, the hierarchical set

comprises of 98% of the population (i.e. 394 instances out of a population size of 400 in Table

6.5 and 392/400 in Table 6.6). From the creation time, it can also be seen that the hierarchy once

formed in the learning process is maintained for generations. For instance, observing the top 9

classifiers that comprise a hierarchical set in Table 6.6, the default hierarchy was achieved at the

42000
th

 iteration (about the 82
th

 epoch).

0 50 100 150 200 250 300
0

50

100

150

200

250

300

350

400
N

u
m

b
e
r

o
f

C
la

ss
if

ie
rs

 (
A

v
g
.)

(a)

DHS

PSND

Others

0 50 100 150 200 250 300
0

2

4

6

8

10

12
x 10

4

T
o
ta

l
S

tr
e
n
g
th

(b)

Default Set

Perfect Set

Others

0 50 100 150 200 250 300
100

200

300

400

500

600

700

A
v
e
ra

g
e
 S

tr
e
n
g
th

(c)

Epoches

Default Set

Perfect Set

Others

0 50 100 150 200 250 300
0

5

10

15

20

25

A
v
e
ra

g
e
 B

id
 A

m
o
u
n
t

(d)

Epoches

Default Set

Perfect Set

95

Table 6.5

A sample pattern of the final population for 11-mux with default action of 0

No C A S NC CT

1 111#######1 1 5499 15 43880

2 110######1# 1 4851 24 18210

3 010##1##### 1 4281 30 29290

4 101#####1## 1 3010 44 17920

5 100####1### 1 2841 44 13440

6 011###1#### 1 2296 44 13620

7 0001####### 1 1750 52 9750

8 001#1###### 1 1317 62 8790

9 ########### 0 108 79 81530

10 #########1# 0 99 1 153540

Figure 6.12 shows the classification accuracy of the learning system for the 20-mux

problem. To reduce computation time, the solution count plot is not included in this simulation.

In here an epoch represents 50000 input presentations out of a total of 2
20

 inputs. The plot shows

the percentage accuracy of the system over the past 50000 randomly selected environmental

inputs averaged over 20 runs. The classification accuracy of the system here is slightly lower

(close to 90%) as compared to the 6-mux and 11-mux problems. This is expected taking into

account the complexity of the system and the randomness in GA which brings new classifiers

into the system that can possibly perturb its performance (i.e. the GA operation can bring

inaccurate classifiers for a transient time and degrade the overall system performance).

96

An LCS system is complex and difficult to fully understand and analyze its dynamics

even for the simpler scenario of a stimulus response system. We have conducted different

simulations that help to better understand the learning dynamics (emergence of subpopulations,

strength variation, bid amount) and give insight on the formation of hierarchically cooperative

subpopulations. The average bid history plot shown in Figure 6.13 indicates the steady state bid

amount for winner classifiers. As can be seen from the plot, the average bid history finally

converged to some steady state value. The simulation results for the 20-mux have also shown the

scalability of the sharing technique for achieving a viable default hierarchy of cooperative rules

in a competing environment.

Table 6.6

A sample pattern of the final population for 11-mux with default action of 1

No C A S NC CT

1 111#######0 0 2892 38 31990

2 001#0###### 0 2739 34 42000

3 101#####0## 0 2698 32 31220

4 011###0#### 0 2246 37 24080

5 110######0# 0 1913 45 17390

6 0000####### 0 955 44 26790

7 100####0### 0 790 48 12490

8 010##0##### 0 635 48 7750

9 ########### 1 261 66 19990

10 ########0## 0 223 1 137630

97

Figure 6.12. The system performance (in percentage accuracy) for 20-mux problem.

Figure 6.13. The average bid amount of winner classifiers at each epoch for 20-mux.

0 20 40 60 80 100 120 140 160 180 200
50

55

60

65

70

75

80

85

90
System Performance, Averaged over 10 runs

Number of Epoches

A
c
c
u
ra

c
y
 (

%
)

0 20 40 60 80 100 120 140 160 180 200
3

4

5

6

7

8

9

10

11

12

13
Plot of Average bid history averaged over 10 runs

Number of Epoches

A
v
e
ra

g
e
 B

id
 H

is
to

ry

98

Figure 6.14(a) shows the distribution of the population along the three clusters. A

population size of 1000 was used in this simulation and the default hierarchy has emerged after

the 50
th

 epoch. From the average bid amount subplot, it can also be inferred that there is enough

bid separation between the default and exception classifiers at steady state.

Figure 6.14. Subpopulation distribution for 20-mux using FPRS scheme.

0 50 100 150 200
0

200

400

600

800

1000

N
u
m

b
e
r
 o

f
 C

la
s
s
if

ie
r
s
 (

A
v
g

.)

(a)

DHS

PSND

Others

0 50 100 150 200
0

2

4

6

8

10
x 10

4

T
o
ta

l
S

tr
e
n
g
th

(b)

Default Set

Perfect Set

Others

0 50 100 150 200
0

50

100

150

200

250

300

A
v

e
r
a
g

e
 S

tr
e
n

g
th

(c)

Epoches

Default Set

Perfect Set

Others

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

A
v

e
r
a
g

e
 B

id
 A

m
o
u

n
t

(d)

Epoches

Default Set

Perfect Set

99

In Table 6.7, the composition of the final population for one typical scenario of default

rule of action one is shown. As shown in Table 6.7, the learning system has evolved to a

hierarchical set (the top 17 classifiers) nearly after the 146
th

 epoch which dominates the

population (99% of the total population) afterwards. In here, a default rule of action 0 (18
th

 row

in Table 6.7) also emerged and co-existed with a default rule of action 1. But, this classifier has a

lower strength and much fewer numbers of instances as compared to the other default. Also, the

other few classifiers emerged nearly at the end of the iteration (see the creation time) due to GA

indicating that the hierarchical set has successfully taken control of the system decision.

6.2.3 Control experiments. To make a comparison with other rewarding schemes and

verify the soundness effectiveness of the fitness proportionate sharing scheme, we conducted two

sets of control experiments using the same simulation set up (parameter values and random

seeds) with our technique for the 6 and 11 multiplexer problems. The first set of experiment

applies uniform sharing and no sharing techniques on a randomly initialized population. The

uniform sharing scheme distributes the total reward R uniformly among all classifiers in the

advocate list. This type of sharing is known in literatures as implicit sharing (Horn and Goldberg,

1996; Wilson, 1989). In the no sharing scheme, each classifier in the advocate list receives a full

reward R from the environment every time a correct action is predicted. In other words, every

classifier in the advocate list receives a constant reward independent of the presence or absence

of other classifiers in its vicinity. This type of sharing assumes the resource of a given

environmental niche is infinite and can accommodate all the classifiers in the population. Under

the selection pressure of the GA used during discovery of rules, this sharing scheme leads to

premature convergence as the whole population tends to converge to the location of an early

discovered optimum point (Workineh and Homaifar, 2012a).

100

Table 6.7

A sample pattern of the final population for 20-mux with default action of 1

No C A S NC CT

(x103)

1 0100####0########### 0 337 59 101

2 0110######0######### 0 327 55 167

3 0111#######0######## 0 325 58 179

4 1100############0### 0 314 57 106

5 1001#########0###### 0 313 58 187

6 0001#0############## 0 312 59 143

7 0011###0############ 0 299 59 219

8 1101#############0## 0 296 61 344

9 0101#####0########## 0 295 59 198

10 1110##############0# 0 295 56 219

11 1010##########0##### 0 294 58 283

12 1111###############0 0 293 58 151

13 1011###########0#### 0 289 57 289

14 1000########0####### 0 277 62 215

15 00000############### 0 271 59 164

16 0010##0############# 0 252 60 183

17 #################### 1 230 57 7341

18 #################### 0 228 2 9413

19 1################### 1 106 1 9962

20 1111###############0 1 90 1 9999

101

The simulation results for this control run are shown in Figure 6.15 and Figure 6.16. As

can be seen from the population distribution in subplots a and b of Figure 6.15 and Figure 6.16, a

viable default hierarchy does not emerge under both reward allocation techniques, at least for the

same simulation set up with the fitness proportionate resource sharing scheme. The results are

also consistence with previous research where there is no claim on the formation of a viable

default hierarchy using any of the reward allocation schemes mentioned.

Figure 6.15. Result for 6-mux with uniform and no sharing schemes.

0 100 200 300 400 500
0

50

100

150

200
Uniform Sharing Scheme

N
u
m

b
er

 o
f

C
la

ss
if

ie
rs

 (
A

v
g
.)

(a)

DHS

PSND

Others

0 100 200 300 400 500
0

50

100

150

200
No Sharing Scheme

(b)

DHS

PSND

Others

0 100 200 300 400 500
0

2

4

6

8
x 10

4

T
o
ta

l
S

tr
en

g
th

(c)

Default Set

Perfect Set

Others

0 100 200 300 400 500
0

5

10

15
x 10

5

(d)

Default Set

Perfect Set

Others

0 100 200 300 400 500
150

200

250

300

350

400

A
v
er

ag
e

S
tr

en
g
th

(e)

Default Set

Perfect Set

Others

0 100 200 300 400 500
0

2000

4000

6000

8000

10000

(f)

Default Set

Perfect Set

Others

0 100 200 300 400 500
0

5

10

15

20

A
v
er

ag
e

B
id

 A
m

o
u
n
t

(g)

Epoches

Default Set

Perfect Set

0 100 200 300 400 500
0

100

200

300

400

500

(h)

Epoches

Default Set

Perfect Set

102

Figure 6.16. Result for 11-mux with uniform and no sharing schemes.

It is also interesting to explore whether an already emerged default hierarchy can be

maintained under these reward allocation techniques (i.e. uniform sharing and no sharing

schemes). To verify this, we conducted another set of control experiments using the output of our

sharing technique as an initial population for the two techniques. In other words, the learning

cycle begins with our sharing technique and once the default hierarchy has evolved and

controlled the system, the fitness proportionate resource sharing is turned off and the other

schemes are applied onwards. Again, the experiment is conducted for the 6 and 11 multiplexer

0 50 100 150 200 250 300
0

100

200

300

400
Uniform Sharing Scheme

N
u

m
b

er
 o

f
C

la
ss

if
ie

rs
 (

A
v

g
.)

(a)

DHS

PSND

Others

0 50 100 150 200 250 300
0

100

200

300

400
No Sharing Scheme

(b)

DHS

PSND

Others

0 50 100 150 200 250 300
0

0.5

1

1.5

2
x 10

5

T
o

ta
l

S
tr

en
g

th

(c)

Default Set

Perfect Set

Others

0 50 100 150 200 250 300
0

0.5

1

1.5

2
x 10

6

(d)

Default Set

Perfect Set

Others

0 50 100 150 200 250 300
0

100

200

300

400

A
v

er
ag

e
S

tr
en

g
th

(e)

Default Set

Perfect Set

Others

0 50 100 150 200 250 300
0

2000

4000

6000

(f)

Default Set

Perfect Set

Others

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

A
v

er
ag

e
B

id
 A

m
o

u
n

t

(g)

Epoches

Default Set

Perfect Set

0 50 100 150 200 250 300
0

20

40

60

80

100

(h)

Epoches

Default Set

Perfect Set

103

and the results obtained are shown in Figure 6.17 and Figure 6.18 respectively. The uniform

sharing technique has a better performance in maintaining the default hierarchical set as

compared to the no sharing techniques. This is evident from the population distribution subplots

a and b of Figure 6.17 and Figure 6.18 (both techniques maintain a larger DHS throughout the

learning process). However, the experiments are in no way conclusive that the two techniques

are able to sustain a default hierarchy once it has emerged for a random initialization.

6.2.4 Theoretical prediction vs. simulation results. The steady state analysis section

provided a theoretical formulation for the expected value of the total strength at steady state for

the default and exception classifiers under the specified assumptions. It is logical to compare the

similarity between the actual values of the total strength obtained using simulations (see part (b)

of Figure 6.8, Figure 6.11 and Figure 6.14) with that of the theoretical estimates given in Chapter

4. For the specified values of the parameters used during simulation (R=1000, K=0.106,

K1=0.006 and K2=0.001), the steady state value of the total strength for the default group using

equation (4.15) would be ~=8.98*10
3
. Also, for the exception group, using these values in

equation (4.25), the steady state total strength value would be ~=3.54*10
4
 for 6-mux, 6.62*10

4

for 11-mux and 1.17*10
5
 for 20-mux. The corresponding actual steady state values from

simulations in Figure 6.8(b), Figure 6.11(b) and Figure 6.14(b) respectively, are very close to

these estimated values. The small deviations (i.e. the estimated values are slightly higher than the

actual values) are expected due to the simplifying assumption we have made during the

formulation. Under the assumption we made, the steady state formulation disregards the impact

of other classifiers (classifiers that are not in the default hierarchical set). But in practice, other

classifiers, though very small in number, always exist in the system due to discovery by GA and

there is a chance that they can reduce the reward share of both the default and exception group.

104

Figure 6.17. A result to check whether a default hierarchy can be sustained under other sharing

schemes for 6-mux

0 100 200 300 400 500
0

50

100

150

200
Uniform Sharing Scheme

N
u
m

b
e
r
 o

f
 C

la
s
s
if

ie
r
s
 (

A
v
g
.)

(a)

DHS

PSND

Others

0 100 200 300 400 500
0

50

100

150

200
No Sharing Scheme

(b)

DHS

PSND

Others

0 100 200 300 400 500
0

1

2

3

4
x 10

4

T
o
ta

l
S

tr
e
n
g
th

(c)

Default Set

Perfect Set

Others

0 100 200 300 400 500
0

2

4

6

8

10
x 10

5

(d)

Default Set

Perfect Set

Others

0 100 200 300 400 500
100

150

200

250

A
v
e
r
a
g
e
 S

tr
e
n
g
th

(e)

Default Set

Perfect Set

Others

0 100 200 300 400 500
0

2000

4000

6000

8000

(f)

Default Set

Perfect Set

Others

0 100 200 300 400 500
0

2

4

6

8

10

A
v
e
r
a
g
e
 B

id
 A

m
o
u
n
t

(g)

Epoches

Default Set

Perfect Set

0 100 200 300 400 500
0

100

200

300

(h)

Epoches

Default Set

Perfect Set

105

Figure 6.18. Simulations to check whether a default hierarchy can be sustained using other

sharing schemes for 11-mux.

0 50 100 150 200 250 300
0

100

200

300

400
Uniform Sharing Scheme

N
u

m
b

e
r

o
f

C
la

ss
if

ie
rs

 (
A

v
g

.)

(a)

DHS

PSND

Others

0 50 100 150 200 250 300
50

100

150

200

250
No Sharing Scheme

(b)

DHS

PSND

Others

0 50 100 150 200 250 300
0

2

4

6
x 10

4

T
o

ta
l

S
tr

e
n

g
th

(c)

Default Set

Perfect Set

Others

0 50 100 150 200 250 300
0

5

10

15
x 10

5

(d)

Default Set

Perfect Set

Others

0 50 100 150 200 250 300
50

100

150

200

A
v

e
ra

g
e
 S

tr
e
n

g
th

(e)

Default Set

Perfect Set

Others

0 50 100 150 200 250 300
3000

4000

5000

6000

7000

(f)

Default Set

Perfect Set

Others

0 50 100 150 200 250 300
1

2

3

4

5

6

A
v

e
ra

g
e
 B

id
 A

m
o

u
n

t

(g)

Epoches

Default Set

Perfect Set

0 50 100 150 200 250 300
0

50

100

150

200

(h)

Epoches

Default Set

Perfect Set

106

CHAPTER 7

Conclusion and Future Work

The “beauty of diversity” makes more real sense to evolutionary algorithms than to any

other areas of discipline. Embracing useful diversity enables evolutionary algorithms to discover

multiple solutions to a problem and hence extend their global search ability for broad

applications such as classification and dynamic clustering. This chapter concludes the

dissertation by emphasizing the major achievements made and suggesting ideas for future

research path. The major component of this dissertation was the introduction of a novel,

ecologically inspired niching technique for evolutionary algorithms. We emphasized its

application for evolving a cooperative population of rules in classifiers, multimodal optimization

and dynamic clustering. A substantial contribution to the field of learning classifier systems

(LCSs) was made through a novel resource sharing technique for discovering and maintaining

default hierarchies.

7.1. Summary

Chapter 1 gave a brief introduction on evolutionary algorithms. A bigger picture of the

problem addressed in this work, major contributions made and the scope of the work were

presented. Before addressing the major thrust of this work, a survey of previous research in this

area was a logical step. Chapter 2 did just that by giving a detailed review of previous research

on issues in multimodal function optimization, various niching techniques, challenges in niche

radius estimation and hierarchical cooperation in classifiers. The major contribution of this work

was presented in Chapter 3. Fitness Proportionate Niching (FPN) was introduced. When the

objective function has several unequal peaks with a large peak ratio, the traditional niching

techniques tend to discover only the location of the highest peak or require a very large

107

population size in order to discover all the peaks. This demand of large population size added to

the distance comparison between individuals makes the traditional sharing techniques

computationally cumbersome. The performance of FPN was compared with that of existing

sharing method for optimizing multimodal functions with unequal peaks. A technique for

estimating the niche radius, a mathematical formulation, complexity analysis and an ecological

analogy were also given. Both simulation results and mathematical analyses showed that the

performance of the proposed niching technique is insensitive to the fitness difference of the

peaks. When individuals share the resource of a given niche in proportion to their fitness, the

population distributes among all the peaks uniformly irrespective of the fitness variation at the

niches. In other words, high peaks in the multimodal fitness landscape are no longer strong

population attractors. This enabled the emergence of stable subpopulations at all the optimum

points in the search space and avoids the population size threshold requirement.

Chapter 4 presented a breakthrough in LCS. A new reinforcement technique using FPN

based resource sharing was applied. Developing algorithms that lead to the emergence and

maintenance of a default hierarchy in an LCS has remained an unachieved goal for researchers in

this community for decades. The resource sharing technique presented in this work has filled the

gap in the research by enabling the co-evolution of default and exception classifiers in such a

way that exception classifiers protect the default from making mistakes without starving it.

To model an environment with a reasonable accuracy, an LCS needs to have a

mechanism to build a cooperative set of diverse rules in the population. Learning in an LCS is an

ongoing process of discovering cooperative and competitive rules by the GA through the

guidance provided by reinforcement. For the best exploration, an LCS requires an intensive

search by applying the GA vigorously while embracing useful diversity in the population. The

108

need to maintain diverse subpopulations compels the use of a restorative force to counterbalance

the selection pressure with some sort of diversity maintaining mechanism. Depending on the

complexity of the working environment, adequate modelling of the environment might require a

huge number of rules that collectively provide a better model of the environment. Building a

hierarchical set of rules, where accurate and more specific rules respond to a subset of the

situations covered by more general but less accurate default rules is vital to achieve a compact

rule set size, especially when dealing with an environment that has huge numbers of states. This

requires the co-existence of exception and default rules in the system so that the exception rules

can protect the default rule from making mistakes without starving them. To the best of our

knowledge, the techniques proposed so far have failed to provide protection without a

subsequent starvation of the default. The proposed niching scheme was applied for learning a

Boolean function. The robustness and scalability of the algorithm was tested by solving

multiplexer problems with various numbers (6, 11 and 20) of inputs. The results obtained for all

the simulations proved the effectiveness of the proposed niching technique.

In Chapter 5, the feasibility of FPN for dynamic clustering was demonstrated using both

real and synthetic data. The chapter showed how an optimization of a multimodal function with

unequal peaks can be mapped into a clustering problem. A formulation of the fitness function for

the GA was provided. It was shown that FPN based clustering can be an alternative clustering

method when knowledge about the data (e.g. distribution of the data, number of clusters etc) is

not known in advance. A detailed discussion of the simulation results was given in Chapter 6.

The simulation results obtained are consistent with the mathematical formulations of the

corresponding approaches given in previous chapters.

109

7.2. Future Work

The results presented herein can inspire a number of research directions to extend the

ideas presented in this work. This section pinpoints some of them.

7.2.1 Multi-label classification. In Chapter 4, we demonstrated a successful application

of FPN for evolving hierarchical cooperation in classifiers. The classification problem solved

was a single-label classification problem, where an instance belongs to only one label or class.

This is foundational research and can serve as point of departure for more sophisticated

biologically inspired computation techniques required for multi-label classification. Two

promising research lines that can benefit from this work are protein sequence classification and

semantic scene identification. There has been quite a lot of research on single label classification

of data. In multi-label classification, an instance in the training set is associated with a set of

classes, and the task is to output a set of classes whose size is unknown a priori for each unseen

instance (Tsoumakas and Katakis, 2007; Tsoumakas et al., 2010). For example, in

bioinformatics, a given protein sequence can be associated with different functions (Jiang and

McQuay, 2012). In medicine a patient may be suffering from multiple diseases at the same time.

In semantic scene identification a given picture can belong to different categories (for instance

both beach and sunset) (Shen et al., 2004). Effective application of multi label techniques can

also be very crucial to understanding complex biological systems. For instance, knowing the

protein mapping from sequence to structure and then structure to function can help in

discovering medical drugs for diseases of no known cure.

Existing multi-label classification approaches follow two general trends: problem

transformation and algorithmic adaptation (Tsoumakas and Katakis, 2007; Tsoumakas et al.,

2010). There are four major intuitive approaches followed in traditional training techniques. The

110

first ignores instances belonging to several classes. Another option uses a subjective approach

where an instance is assigned to the most obvious class during training. The third option is to

extend the number of classes (labels) by forming a hybrid class to accommodate the multi-label

data. The drawback of this approach is that it substantially increases the number of classes to be

considered and the data in such combined classes are usually sparse. The fourth option is to

decompose each multi-label instance into multiple independent binary classification problems

(one per category). But this approach does not consider the correlations between the different

labels of each instance. In reality, different functional classes are naturally dependent on one

another. Thus, this approach ignores the inherent correlations among different classes, which

often could be an important indicator for deciding the class memberships, especially when a

severe unbalanced data problem occurs. Instead, in multi-label learning, class memberships can

be inferred through label correlations, which provide an opportunity to improve the classification

accuracy. Evaluation of the learning technique is also another challenge as standard single label

evaluation metrics such as precision, recall and accuracy can be vague for multi-label

classification. Due to the overlap of the classes the output of the classifier can be perfectly

correct, partially correct or fully wrong depending on the number of associations of a particular

instance.

7.2.2 Extension to real-valued LCS. We have considered a stimulus-response (Nasraoui

and Krishnapuram) learning system for binary Boolean function learning. When the inputs are

real valued representation becomes an issue. This is particularly because the inputs can have any

value and the search space grows significantly. LCSs with real-valued inputs would be a good

area to investigate further as it helps to expand the application of the technique for real-valued

data classification.

111

7.2.3 More clustering applications. The application of FPN for dynamic clustering was

given in Chapter 5. However, it was by no means thorough and hence further exploration by

comparing the performance of FPN for dynamic clustering with other existing algorithms is

essential. Investigating whether the clustering algorithm is able to discover clusters of arbitrary

shape and whether it is robust to outliers is a good starting point to pursue.

7.2.4 Evolution dynamics. The empirical results given in Chapter 6 have shown the

emergence of subpopulations (default and exception classifiers) as the learning process goes on.

The steady state analysis addressed action-reward dynamics by examining the steady state

behaviour of subpopulation of classifiers for the typical scenario of a stimulus-response LCS. A

more general and detailed analysis of the evolution dynamics on the emergence of

subpopulations, the composition of the population at equilibrium and the maintenance of niches

under the selection pressure of the GA are interesting areas to explore in future research.

112

References

Ando, S., Sakuma, J., & Kobayashi, S. (2005). Adaptive isolation model using data clustering

for multimodal function optimization. Paper presented at the Proceedings of the 2005

conference on Genetic and evolutionary computation.

Asoh, H., & Mühlenbein, H. (1994). On the mean convergence time of evolutionary algorithms

without selection and mutation. Parallel Problem Solving from Nature—PPSN III, 88-97.

Bacardit , J. (2004). Pittsburgh genetic-based machine learning in the data mining era:

Representations, generalization, and run-time. Universitat Ramon Llull.

Bacardit, J., Goldberg, D., & Butz, M. (2007). Improving the performance of a Pittsburgh

learning classifier system using a default rule. In T. Kovacs, X. Llorà, K. Takadama, P.

Lanzi, W. Stolzmann & S. Wilson (Eds.), Learning Classifier Systems (Vol. 4399, pp.

291-307): Springer Berlin Heidelberg.

Back, T. (1996). Evolutionary algorithms in theory and practice: Evolution strategies,

evolutionary programming, genetic algorithms: Oxford University Press, USA.

Back, T., & Schwefel, H. (1993). An overview of evolutionary algorithms for parameter

optimization. Evolutionary computation, 1(1), 1-23.

Booker, L. (1982). Intelligent behavior as an adaptation to the task environment. University of

Michigan.

Booker, L. (1989). Triggered rule discovery in classifier systems. Paper presented at the

Proceedings of the 3rd International Conference on Genetic Algorithms.

Booker, L., Goldberg, D., & Holland, J. (1990). Classifier systems and genetic algorithms. In J.

G. Carbonell (Ed.), Machine learning: paradigms and methods (pp. 235-282): Elsevier

North-Holland, Inc.

113

Butz, M., Kovacs, T., Lanzi, P., & Wilson, S. (2004). Toward a theory of generalization and

learning in XCS. Evolutionary Computation, IEEE Transactions on, 8(1), 28-46.

Casillas, J., Carse, B., & Bull, L. (2007). Fuzzy-XCS: A Michigan genetic fuzzy system. Fuzzy

Systems, IEEE Transactions on, 15(4), 536-550.

Chang, D., Zhang, X., Zheng, C., & Zhang, D. (2010). A robust dynamic niching genetic

algorithm with niche migration for automatic clustering problem. Pattern recognition,

43(4), 1346-1360.

Chang, D., Zhao, Y., & Zheng, C. (2011). A real-valued quantum genetic niching clustering

algorithm and its application to color image segmentation. Paper presented at the

Intelligent Computation and Bio-Medical Instrumentation (ICBMI), 2011 International

Conference on.

Cioppa, A., Stefano, C., & Marcelli, A. (2004). On the role of population size and niche radius in

fitness sharing. Evolutionary Computation, IEEE Transactions on, 8(6), 580-592.

Cioppa, A., Stefano, C., & Marcelli, A. (2007). Where are the niches? Dynamic fitness sharing.

evolutionary computation, IEEE transactions on, 11(4), 453-465.

Davidor, Y. (1991). A naturally occurring niche & species phenomenon: The model and first

results. Paper presented at the Proceedings of the Fourth International Conference on

Genetic Algorithms.

Deb, K., & Goldberg, D. (1989). An investigation of niche and species formation in genetic

function optimization. Paper presented at the Proceedings of the 3rd International

Conference on Genetic Algorithms.

Dick, G. (2010). Automatic identification of the niche radius using spatially-structured clearing

methods. Paper presented at the Evolutionary Computation (CEC), 2010 IEEE Congress.

114

Dick, G., & Whigham, P. (2006). Spatially-structured evolutionary algorithms and sharing: Do

they mix? Simulated Evolution and Learning, 457-464.

Dick, G., & Whigham, P. (2008). Spatially-structured sharing technique for multimodal

problems. Journal of Computer Science and Technology, 23(1), 64-76.

Duan, L., Xu, L., Guo, F., Lee, J., & Yan, B. (2007). A local-density based spatial clustering

algorithm with noise. Information Systems, 32(7), 978-986.

Floudas, C., & Pardalos, P. (1996). State of the art in global optimization: Computational

methods and applications. Nonconvex optimization and its applications: Kluwer

Academic, Dordrecht.

Forrest, S., Javornik, B., Smith, R., & Perelson, A. (1993). Using genetic algorithms to explore

pattern recognition in the immune system. Evolutionary computation, 1(3), 191-211.

Frey, P., & Slate, D. (1991). Letter recognition using Holland-style adaptive classifiers. Machine

Learning, 6(2), 161-182.

Giráldez, R., Aguilar-Ruiz, J., & Riquelme, J. (2003). Natural coding: A more efficient

representation for evolutionary learning. Paper presented at the Genetic and

Evolutionary Computation—GECCO 2003.

Goldberg, D. (1983). Computer-aided gas pipeline operation using genetic algorithms and rule

learning.

Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning:

Addison-Wesley.

Goldberg, D., Deb, K., & Horn, J. (1992). Massive multimodality, deception, and genetic

algorithms. Urbana, 51, 61801.

115

Goldberg, D., & Richardson, J. (1987). Genetic algorithms with sharing for multimodal function

optimization. Paper presented at the Proceedings of the Second International Conference

on Genetic Algorithms on Genetic algorithms and their application.

Hilliard, M., Liepins, G., Palmer, M., Morrow, M., & Richardson, J. (1987). A classifier based

system for discovering scheduling heuristics. Paper presented at the Proceedings of the

Second International Conference on Genetic Algorithms on Genetic algorithms and their

application.

Holland, J. (1975). Adaptation in natural and artificial systems, University of Michigan press.

Ann Arbor, MI, 1(97), 5.

Holland, J. (1976). Adaptation progress in theoretical biology (Vol. 4).

Holland, J. (1980). Adaptive algorithms for discovering and using general patterns in growing

knowledge bases. International Journal of Policy Analysis and Information Systems,

4(3), 245-268.

Holland, J. (1985). Properties of the bucket brigade. Paper presented at the Proceedings of the

1st International Conference on Genetic Algorithms.

Holland, J. (1986). Escaping brittleness: The possibilities of general purpose learning algorithms

applied to parallel rule-based system. Machine Learning, 593-623.

Holland, J. (1992). Adaptation in natural and artificial systems: An introductory analysis with

applications to biology, control, and artificial intelligence: MIT Press.

Holland, J., Booker, L., Colombetti, M., Dorigo, M., Goldberg, D., Forrest, S., Stolzmann, W.

(2000). What is a learning classifier system? Learning Classifier Systems, 3-32.

Holland, J., & Holyoak, K. (1988). J., Nisbett RE, Thagard PR (1988). Induction-Processes of

inference, learning, and discovery: Cambridge (Mass): MIT Press.

116

Holland, J., & Reitman, J. (1977). Cognitive systems based on adaptive algorithms. SIGART

Bull.(63), 49-49.

Holland, J. H. (1995). Escaping brittleness: The possibilities of general-purpose learning

algorithms applied to parallel rule-based systems. In F. L. George (Ed.), Computation

& intelligence (pp. 275-304): American Association for Artificial Intelligence.

Homaifar, A., Goldberg, D., & Carroll, C. (1988). Boolean function learning with a classifier

system. 264-272.

Horn, J. (1993). Finite Markov chain analysis of genetic algorithms with niching. Forrest, 727,

110-117.

Horn, J., & Goldberg, D. (1996). Natural niching for evolving cooperative classifiers. Paper

presented at the Proceedings of the First Annual Conference on Genetic Programming,

Stanford, California..

Horn, J., Goldberg, D., & Deb, K. (1994). Implicit niching in a learning classifier system:

Nature's way. Evolutionary computation, 2(1), 37-66.

Jiang, J., & McQuay, L. (2012). Predicting protein function by multi-label correlated semi-

supervised learning. Computational Biology and Bioinformatics, IEEE/ACM

Transactions on, 9(4), 1059-1069.

Jong, K. (1975). Analysis of the behavior of a class of genetic adaptive systems.

Kovacs, T. (2004). Strength or accuracy: Credit assignment in learning classifier systems:

Springer.

Lanzi, P., & Riolo, R. (2000). A roadmap to the last decade of learning classifier system research

(from 1989 to 1999). Learning Classifier Systems, 33-61.

117

Lee, C., Cho, D., & Jung, H. (1999). Niching genetic algorithm with restricted competition

selection for multimodal function optimization. Magnetics, IEEE Transactions on, 35(3),

1722-1725.

Li, J., Balazs, M., Parks, G., & Clarkson, P. (2002). A species conserving genetic algorithm for

multimodal function optimization. Evolutionary computation, 10(3), 207-234.

Mahfoud, S. (1994a). Crossover interactions among niches. Paper presented at the Evolutionary

Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings

of the First IEEE Conference on.

Mahfoud, S. (1994b). Population size and genetic drift in fitness sharing. Urbana, 51, 61801.

Mahfoud, S. (1995). Niching methods for genetic algorithms. Urbana, 51, 61801.

Mengshoel, O., & Goldberg, D. (1999). Probabilistic crowding: Deterministic crowding with

probabilistic replacement. Paper presented at the Proc. of the Genetic and Evolutionary

Computation Conference (GECCO-99).

Miller, B., & Shaw, M. (1996). Genetic algorithms with dynamic niche sharing for multimodal

function optimization. Paper presented at the Evolutionary Computation, 1996.,

Proceedings of IEEE International Conference on.

Nasraoui, O., & Krishnapuram, R. (2000). A novel approach to unsupervised robust clustering

using genetic niching. Paper presented at the Fuzzy Systems, 2000. FUZZ IEEE 2000.

The Ninth IEEE International Conference on.

Pardalos, P., & Romeijn, H. (2002). Handbook of global optimization (Vol. 2): Springer.

Petrowski, A. (1996). A clearing procedure as a niching method for genetic algorithms. Paper

presented at the Evolutionary Computation, 1996., Proceedings of IEEE International

Conference on.

118

Riolo, R. (1987). Bucket brigade performance: II. Default hierarchies. Paper presented at the

Proceedings of the Second International Conference on Genetic Algorithms on Genetic

algorithms and their application, Cambridge, Massachusetts, USA.

Robertson, G., & Riolo, R. (1988). A tale of two classifier systems. Machine Learning, 3(2),

139-159.

Sander, J., Ester, M., Kriegel, H., & Xu, X. (1998). Density-based clustering in spatial databases:

The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery,

2(2), 169-194.

Sareni, B., & Krahenbuhl, L. (1998). Fitness sharing and niching methods revisited.

Evolutionary Computation, IEEE Transactions on, 2(3), 97-106.

Shen, X., Boutell, M., Luo, J., & Brown, C. (2004). Multilabel machine learning and its

application to semantic scene classification. Paper presented at the Proceedings of SPIE.

Sheng, W., Tucker, A., & Liu, X. (2004). Clustering with niching genetic K-means algorithm.

Paper presented at the Genetic and Evolutionary Computation–GECCO 2004.

Shir, O., & Back, T. (2005). Dynamic niching in evolution strategies with covariance matrix

adaptation. Paper presented at the Evolutionary Computation, 2005. The 2005 IEEE

Congress on.

Shir, O., & Back, T. (2006). Niche radius adaptation in the CMA-ES niching algorithm. Parallel

Problem Solving from Nature-PPSN IX, 142-151.

Shir, O., Emmerich, M., & Back, T. (2007). Self-adaptive niching CMA-ES with Mahalanobis

metric. Paper presented at the Evolutionary Computation, 2007. CEC 2007. IEEE

Congress on.

119

Smith, R., Forrest, S., & Perelson, A. (1993). Searching for diverse, cooperative populations with

genetic algorithms. Evolutionary computation, 1(2), 127-149.

Smith, R., & Goldberg, D. (1990, 26-27 Mar 1990). Reinforcement learning with classifier

systems. Paper presented at the AI, Simulation and Planning in High Autonomy Systems,

1990., Proceedings.

Smith, R., & Goldberg, D. (1992). Reinforcement learning with classifier systems: Adaptive

default hierarchy formation. journal of Applied Artificial Intelligence, 6(1), 79-102.

Smith, R., & Valenzuela-Rendón, M. (1989). A study of rule set development in learning

classifier system. Paper presented at the Proceedings of the third international conference

on Genetic algorithms.

Smith, S. (1980). A learning system based on genetic adaptive algorithms. University of

Pittsburgh.

Streichert, F., Stein, G., Ulmer, H., & Zell, A. (2004). A clustering based niching EA for

multimodal search spaces. Paper presented at the Artificial Evolution.

Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: An overview. International

Journal of Data Warehousing and Mining (IJDWM), 3(3), 1-13.

Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. Data mining and

knowledge discovery handbook, 667-685.

Weise, T. (2008). Global optimization algorithms–Theory and application. URL: http://www. it-

weise. de, Abrufdatum, 1, 24.

Wilson, S. (1985). Knowledge growth in an artificial animal. Paper presented at the Proceedings

of the 1st International Conference on Genetic Algorithms.

120

Wilson, S. (1989). Bid competition and specificity reconsidered. Journal of Complex Systems,

2(6), 705-723.

Wilson, S. (1994). ZCS: A zeroth level classifier system. Evolutionary computation, 2(1), 1-18.

Wilson, S. (1995). Classifier fitness based on accuracy. Evolutionary computation, 3(2), 149-

175.

Wilson, S., & Goldberg, D. (1989). A critical review of classifier systems Proceedings of the

third international conference on Genetic algorithms: Morgan Kaufmann Publishers Inc.

Workineh, A., & Homaifar, A. (2011). Robust bidding in learning classifier systems using loan

and bid history. Complex Systems, 19(3), 287.

Workineh, A., & Homaifar, A. (2012a). Fitness proportionate niching: Maintaining diversity in

a rugged fitness landscape. Paper presented at the 2012 International Conference on

Genetic and Evolutionary Methods, Las Vegas.

Workineh, A., & Homaifar, A. (2012b). Fitness proportionate reward sharing: A viable default

hierarchy formation strategy in LCS. Paper presented at the the 2012 International

Conference on Genetic and Evolutionary Methods, Las Vegas.

Workineh, A., & Homaifar, A. (2012c). A new bidding strategy in LCS using a decentralized

loaning and bid history. Paper presented at the Aerospace Conference, 2012 IEEE.

Yang, M., & Wu, K. (2004). A similarity-based robust clustering method. Pattern Analysis and

Machine Intelligence, IEEE Transactions on, 26(4), 434-448.

Zhang, G., Yu, L., Shao, Q., & Feng, Y. (2006). A clustering based GA for multimodal

optimization in uneven search space. Paper presented at the Intelligent Control and

Automation, 2006. WCICA 2006. The Sixth World Congress on.

121

Appendix A

The DNINE algorithm is given below:

Initialize: the population pop, the population size N, the niche radius (o).

NA(t)=0 (the number of actual niches at generation t)

NM(t)=0 (the number of niche master candidates)

NC=0 (the niche master candidate set)

DN =0 (the dynamic niche set)

The niche master identification step:

 For i=1 to N do

 If the ith individual is not marked then

 NM(t)= NA(t)+1;

 n(NM(t))=1 (the number of individuals in the NM(t)
th

 niche candidate set)

 For j=i+1 to P do

 If(d(i,j)<o) and (j
th

 individual is not marked)

 Insert j
th

 individual in to the niche master candidate set NC,

 n(NM(t))=n(NM(t))+1

 End if

 End for

 If (n(NM(t))>1) then

 NA(t)= NA(t)+1

 Mark i
th

 individual as the niche master of the NA(t)
th

 niche

 Insert the pair (i
th

 individual, n(NM(t))) in DN

 End if

122

 End if

 End for

And the niche expansion (niche refining step) is as shown below:

For l=1 to u(t)

 find the nearest neighbor of each niche master candidate.

 determine whether the two niches communicate

 if there is communication between them

 merge the two niches

 otherwise

 both remain in the population

End for

End for

123

Appendix B

Journals

1. Workineh A. and Homaifar A. “Evolving Hierarchical Cooperation in Classifiers using

 itness Proportionate Niching” ournal of Complex Systems (submitted, Jan 02).

2. Workineh A. and Homaifar A. “ obust idding in Learning Classifier Systems using

Loan and id History ” ournal of Complex Systems olume Issue pps -303,

2011 (published).

3. Dugda, M.T., Workineh, A. T., Homaifar, A. and Kim, J.H. (2012). ” eceiver

Function Inversion Using enetic Algorithms” Bulletin Seismological Society of

America (published).

Peer Reviewed Conference Papers

1. Workineh A. and Homaifar A. “ itness Proportionate eward Sharing: a iable efault

Hierarchy ormation Strategy in LCS” The 2012 International

Conference on Genetic and Evolutionary Methods, GEM 2012, Las Vegas, July 16-19,

2012.

2. Workineh A. and Homaifar A. “ itness Proportionate Niching: Maintaining iversity

in a ugged itness Landscape” The International Conference on Genetic and

Evolutionary Methods EM’ Las egas uly -19, 2012.

3. Workineh A. and Homaifar A. “A New idding Strategy in LCS using ecentralized

Loaning ” IEEE aerospace conference March -13, Big Sky, Montana, 2012.

4. Workineh, A., Dugda, M. Homaifar A. and Lebby . “ M H and NN

Networks for Multi-Class ata Classification” The International Conference on

Artifical Intelligence, ICAI’ Las egas uly -19, 2012.

124

5. Workineh A. and Homaifar A. “ obust idding in LCS using Loan and id History”

IEEE aerospace conference, March 06-13, Big Sky, Montana, 2010.

6. Workineh A. Homaifar A. (Extended Abstract “ itness Proportionate Niching: A

Different Perspective on Co-evolution of iverse Population” ALife MIT Press uly

19-22, 2012.

Poster Presentations (peer reviewed and blog posts)

1. Workineh A. ugda M. Homaifar A. and Lebby . “ M H and NN

Networks –A Comparative Study for Multi-Class ata Classification” The

8th International Conference & Expo on Emerging Technologies for a Smarter World

(CEWIT ” Hauppauge New York November -3, 2011.

2. Workineh A. poku . and Homaifar A. “Evolutionary Learning Navigation and

Target Identification for Assistive obotic Application” Poster presentation at the

BEACON Annual Congress, Michigan State University, August 2011.

3. Workineh A. and Homaifar A “Evolving Hierarchical Cooperation in Classifiers:

Nature’s Way” Poster Competition at North Carolina A&T State University Spring

2012.

4. Workineh, A, and Homaifar A. “ idding Strategy in Learning Classifier Systems Using

Loan and Niching A” blog post at EAC N esearcher’s website August .

	Fitness Proportionate Niching: Harnessing The Power Of Evolutionary Algorithms For Evolving Cooperative Populations And Dynamic Clustering
	Recommended Citation

	tmp.1588277939.pdf.goKNi

