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Abstract 

Evolutionary algorithms work on the notion of “best fit will survive” criteria. This makes 

evolving a cooperative and diverse population in a competing environment via evolutionary 

algorithms a challenging task. Analogies to species interactions in natural ecological systems 

have been used to develop methods for maintaining diversity in a population. One such area that 

mimics species interactions in natural systems is the use of niching. Niching methods extend the 

application of EAs to areas that seeks to embrace multiple solutions to a given problem.  

The conventional fitness sharing technique has limitations when the multimodal fitness 

landscape has unequal peaks. Higher peaks are strong population attractors. And this technique 

suffers from the ‘curse of population size’ in attempting to discover all optimum points. The use 

of high population size makes the technique computationally complex, especially when there is a 

big jump in fitness values of the peaks. This work introduces a novel bio-inspired niching 

technique, termed Fitness Proportionate Niching (FPN), based on the analogy of finite resource 

model where individuals share the resource of a niche in proportion to their actual fitness. FPN 

makes the search algorithm unbiased to the variation in fitness values of the peaks and hence 

mitigates the drawbacks of conventional fitness sharing. FPN extends the global search ability of 

Genetic Algorithms (GAs) for evolving hierarchical cooperation in genetics-based machine 

learning and dynamic clustering. To this end, this work introduces FPN based resource sharing 

which leads to the formation of a viable default hierarchy in classifiers for the first time. It results 

in the co-evolution of default and exception rules, which lead to a robust and concise model 

description. The work also explores the feasibility and success of FPN for dynamic clustering. 

Unlike most other clustering techniques, FPN based clustering does not require any a priori 

information on the distribution of the data.   
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CHAPTER 1  

Introduction 

All living things have some degree of inherent intelligence and strive to adapt to 

situations through ongoing learning. We learn heuristics throughout our life and use them to 

solve various problems in day-to-day life. But machines have no intuition and hence fail to 

understand commonsense knowledge. One of the most striking features of nature is the existence 

of living organisms in a wide range of ecosystems adapted for surviving in a continuously 

changing environment. The unguided natural evolution of living things in response to 

environmental variations has attracted the attention of many researchers pursuing the 

development of computer systems with analogous features. Learning from nature has been the 

key aspect of Evolutionary Algorithms (EAs). Adaptation of this natural intelligence to machines 

has contributed to the advancement of technology. The essence of EAs is to use ideas from 

natural evolution in order to find a global optimum solution to a certain problem. EAs are 

population-based robust metaheuristic optimization algorithms that use biology-inspired 

mechanisms like mutation, crossover, natural selection, and survival of the fittest in order to 

refine a set of solution candidates iteratively. Evolution in living things is unguided and its goal 

is usually unpredictable (Back, 1996; Back and Schwefel, 1993). EAs introduce a change in 

semantics of natural evolution being goal driven. Compared to other optimization techniques, 

EAs have an advantage of being a “black-box” (i.e. making only few assumptions about the 

underlying objective function) approach to modeling a problem. The objective function does not 

require a deep knowledge of the structure of the problem space. This enables EAs to perform 

consistently well in a variety of problem categories (Weise, 2008, Floudas and Pardalos, 1996). 

In addition, unlike many other optimization techniques which suffer from the problem of 
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premature convergence to a local optima, EAs have a mechanism to avoid getting trapped in a 

local optima through discovery of new candidate solutions in the search space outside of the 

locally optimal regions by using a mutation operator (Floudas and Pardalos, 1996; Pardalos and 

Romeijn, 2002). The mutation operator is a means that enables EAs to get out of local optima. 

1.1 Motivation  

This work has been part of a large project funded by the National Science Foundation 

BEACON Center, which aims on harnessing the power of biological evolution to engineer better 

solutions to real problems. With the increasing complexity of real-world optimization problems, 

demand for robust, fast, and accurate optimizers in a wide variety of multi-dimensional, 

multiobjective and multimodal optimization problems is on the rise among researchers in various 

fields. In this era of huge amounts of digital data, efficient and robust computational methods are 

of utmost importance for knowledge discovery and information retrieval, which involves 

techniques for clustering, classification and analysis of dynamic data.  

In most real scenarios, the working environment is dynamic and known only partially. In 

addition, the solution space to some problems is usually huge and an exhaustive search for 

finding the best of the many possible candidates might not be feasible cost and time-wise. This 

makes designing an accurate mathematical model for optimal solutions a very daunting task, 

especially when the learning system needs to model an environment with huge number of states 

(Lanzi and Riolo, 2000, Riolo, 1987). Building a model that adapts to a dynamic environment 

through ongoing learning is a major contemporary challenge. Evolutionary algorithms are 

population based search heuristics that address this. Interspecies interactions through 

recombination and mutation allow the population to rapidly identify regions of the fitness 

landscape with high fitness and hence locate a satisfactory solution to a given problem without 
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being trapped in local optima (Lee et al., 1999). Like any other meta-heuristics search technique, 

EAs cannot guarantee the global optimum solution. Instead, EAs provide an engineering solution 

to a given problem. By maintaining useful diversity in a population, EAs avoid early 

convergence to have sufficient exploration of the search space and locate multiple optima at the 

same time (Horn and Goldberg, 1996; Shir and Back, 2006). 

1.2 Problem Description 

This research has primarily focused on addressing key challenges in two related areas of 

machine learning: multimodal function optimization and classification. The conventional fitness 

sharing technique enables a Genetic Algorithm (GA) to discover multiple optima simultaneously 

by maintaining a useful diversity in a population. It is based on an ecological analogy of a finite 

resource model, where individuals in a given niche share the resource of that niche. Peaks of the 

multimodal fitness landscape represent the resource of a particular niche. In a multimodal fitness 

landscape, the traditional fitness sharing scheme tends to distribute the population along the 

various peaks in proportion to the fitness of each niche. Higher peaks in the fitness landscape are 

strong population attractors and hence a significant proportion of the population rushes to 

converge to those points. On the other hand, lower peaks remain as weaker attractors until the 

resource of higher peaks gets depleted and other individuals in the population will no longer 

have an incentive to migrate to those niche locations. The problem with this kind of sharing is 

that as higher peaks in the fitness landscape attract the majority of the population, the search 

technique is unable to discover other peaks of lower fitness value. In other words, if there is a 

large gap between the peaks of the multimodal fitness landscape, the EA typically requires a 

large population size in order to discover all the optimum points effectively. This makes the 

success of the search technique highly dependent on population size. Intuitively, the larger the 
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population size, the slower is the search process as the EA requires more computation time for 

convergence. Multimodal functions can also be mapped to represent the density of data for 

clustering: dense areas map to higher peaks and sparse areas to the location of lower peaks (see 

Figure 1.1). In such a scenario, higher peaks may not necessarily be more relevant than lower 

peaks. In Figure 1.1 for instance, clusters C1 and C5 are equally important from the point of view 

of categorizing the data in to appropriate number of clusters. Hence, discovering both cluster 

centers is equally important for the search technique. Is it possible to consider all the optima 

equally attractive from the EA search point of view so that the difference in the fitness of the 

highest and lowest peaks does not affect the performance of the search technique? This, if 

possible, would avoid the population size dependency and hence making the search process 

faster.  

 

Figure 1.1. Mapping multimodal fitness landscape to clustering. 

The second focus area of this research is classification, particularly classification using 

Michigan style LCSs. LCSs are rule-based learning models guided by a reinforcement signal. 

Rules are classifiers that compete for a resource to maximize their strength. The goal of the 

learning system is to build a set of rules that work in coordination to accurately model a given 

environment. This requires a mechanism to evolve and sustain a diverse, cooperative population 

C1 

C2 

C4 

C3 

C5 
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of rules that together represent a concept or model a set of behaviors that solve a given problem. 

The LCS in its very nature has a unique power of discovering cooperating rules through a GA by 

the guidance of reinforcement learning. However, it would tend to lose diversity due to a strong 

selection pressure of the GA. Hence, to maintain a cooperative diversity while applying a 

selection operator to the population of rules, it must incorporate a mechanism to counterbalance 

the effect of selection pressure. An LCS that is to work in an environment with huge numbers of 

states can be modeled in either of two ways. One possible way is using a population of rules that 

never make mistakes. This makes the learning system computationally complex and 

unacceptable to model realistic problems due to the curse of large population size. Besides, an 

environment exhibiting perpetual novelty combined with a limited sampling of it adds another 

order of complexity. The other alternative is to build a hierarchical model where the task of the 

learning system is to categorize the states into groups that can be treated in a similar way.  

The question this research has aimed to address is: is it possible to evolve a hierarchical 

set of cooperating rules in which general and specific rules coexist in a competing environment 

while the specific rules provide protection to the general rules without starving them? If this is 

realizable, it helps to build a concise concept description. A crude analogy from real life would 

be a scenario where general practitioners and specialists work in cooperation. A general 

physician can diagnose a variety of health problems that do not need a specialty. There is no 

need for a specialist when the general physician is good enough. But, a general physician needs 

to be covered by a specialist for special cases. So, a well optimized system is one that embraces 

the co-existence of both in the system. Similarly in LCS, is it possible to protect the default 

(general classifier) from making mistakes by the exception classifiers without starving it when its 

action is right? The starvation-protection dilemma has been the bottleneck of the research in this 
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community for over three decades. Our research provides a solution to the challenges mentioned 

above. 

1.3 Contribution 

This work makes two significant contributions to the field of evolutionary algorithms. 

The first contribution is the development of a novel niching technique, termed Fitness 

Proportionate Niching (FPN), for multimodal function optimization. FPN is a resource sharing 

strategy where individuals in a given environmental niche share the resource of that niche in 

proportion to their actual fitness. The niching technique developed is based on a finite resource 

model. It is analogous to an ecological scenario where a different amount of resource supports 

the same number of different species (for instance, a ten meters cube of water may support three 

lions whereas a six meters cube of water may suffice to support the same number of dogs for the 

same duration). This ecological scenario is mapped into the developed algorithm to model 

resource sharing in a rugged fitness landscape. The distribution of the resource is modeled by the 

fitness landscape and its amount refers to the fitness value. The species (dogs and lions in this 

example) refer to subpopulations at the location of each niche. The number of niches 

corresponds to the number of peaks (optimum points) of the fitness landscape. The variation in 

amount of a resource (e.g. 10m
3 

and 6m
3
) corresponds to peaks of different fitness value in the 

fitness landscape.  

The second major contribution of this work is the adaption of FPN for evolving 

hierarchical cooperation in classifiers. Classification is a supervised learning where the learning 

system, once sufficiently trained, seeks to categorize previously unseen instances in to correct 

classes or labels. An LCS accomplishes this task by evolving a population of classifiers using a 

reinforcement signal. Classifiers are rewarded every time an input is correctly classified. All 



9 

 

classes (labels) are considered equally important (i.e., a classifier which correctly classifies an 

input from one class and another which correctly classifies a different input from another class 

are equally rewarded by the trainer). FPN is used as a resource sharing mechanism to reinforce 

classifiers that match to a given input. This effectively turns the classification problem into an 

optimization problem of a multimodal function with equal peaks. Depending on the complexity 

of the working environment, adequate modeling of the environment might require a huge number 

of rules that collectively give a better model of the environment. Building a hierarchical set of 

rules, where accurate and more specific rules respond to a subset of the situations covered by 

more general but less accurate default rules is vital to achieving a compact rule set size, 

especially when dealing with an environment that has huge numbers of states. This requires the 

co-existence of exception and default rules in the system so that the exception rules can protect 

the default rule from making mistakes without starving it. To the best of our knowledge, the 

techniques proposed so far have failed to provide protection without a subsequent starvation of 

the default. This work has filled the research gap in evolving hierarchical cooperation in a 

diverse population of classifiers. A new formulation of steady state analysis (expressions 

governing the group strength variation and subpopulation dynamics) is also part of our 

contribution to the field. 

Several sections of this dissertation are published in journals and peer reviewed 

conferences. The most relevant publications are listed below (see the appendix for detail).  

Workineh, A. & Homaifar, A. (2012). Evolving hierarchical cooperation in classifiers via fitness 

proportionate niching. Journal of Complex Systems (in review).  

Workineh, A. & Homaifar, A. (2011). Robust bidding in learning classifier systems using loan 

and bid history. Journal of Complex Systems, Vol. 19, Issue 3, pp. 287-303. 
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Workineh, A. & Homaifar, A.(2012). Fitness proportionate reward sharing: a viable default 

hierarchy formation strategy in LCS. The 2012 International Conference on Genetic and 

Evolutionary Methods, Las Vegas, July 16-19. 

Workineh, A. & Homaifar, A. (2012). Fitness proportionate niching: maintaining diversity in a 

rugged fitness landscape. The 2012 International Conference on Genetic and 

Evolutionary Methods, Las Vegas, July 16-19. 

Workineh, A., & Homaifar, A. (2012). Fitness proportionate niching: A different perspective on 

co-evolution of diverse population. ALife13, Michigan State University, July 19-22 

(Extended Abstract). 

Workineh, A., & Homaifar, A.(2012). A new bidding strategy in LCS using a decentralized 

loaning and bid history. IEEE Aerospace Conference, 1-8, Big Sky, MT., March 03-12.  

1.4 Dissertation Scope 

The term EA is very broad and refers to a collection of global optimization heuristics that 

are inspired by natural evolution in living organisms. The focus of this work, however, is limited 

to the two types of EAs: Genetic Algorithms (GAs) and Learning Classifiers Systems (LCSs). In 

particular, it focuses on maintaining diversity in a competing population and its applications in 

evolving hierarchical cooperation in classifiers and clustering. We developed a novel niching 

technique that alleviates the limitations of traditional fitness sharing. Its validity is tested and 

compared with existing sharing techniques using benchmark problems used in the literatures. 

This research is not directed at any specific type of application. Instead, its practical significance 

for solving real problems in broad areas of application (classification, clustering and multimodal 

function optimization) is demonstrated. For classification, the niching scheme is used as a 

resource allocation technique in LCSs to evolve a hierarchical set of cooperating rules. It is 
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successfully applied in single label classification tasks. Though the simulations are carried out 

for Boolean function learning using an LCS, the algorithm can be extended to any evolutionary 

algorithm that seeks to evolve a hierarchical set of cooperating rules for a concise concept 

description. Its role in dynamic clustering is also explored using both synthetic and real data. The 

intent here, however, is not to compare its performance with or claim an improvement over a 

specific clustering algorithm. Most clustering algorithms rely on a priori knowledge (for instance 

number of clusters, the distribution of the data etc) on the data. We have demonstrated that the 

developed niching technique can be applied in clustering when such a priori information is not 

available in advance. This dissertation has also shown the applicability of the technique for 

multimodal function optimization. 

1.5 Dissertation Outline 

The remainder of the dissertation is organized as follows. Chapter 2 provides an overview 

of related research work with an emphasis on multimodal function optimization, niching GAs 

and LCSs. Research on various niching methods and the challenge of niche radius estimation are 

discussed in this chapter. A review of the state of the art on the challenges in the formation of 

default hierarchies in LCSs is also given in this chapter. The main contributions of this work are 

presented in chapters 3 and 4. Chapter 3 discusses the novel FPN technique. The mathematical 

formulation, performance measure and its ecological analogy are detailed. A complexity analysis 

by comparing it with the traditional fitness sharing technique is also provided. The methodology 

for evolving hierarchical cooperation in classifiers is discussed in chapter 4. A new formulation 

of the classifier format is presented and an FPN based reinforcement scheme is used to allocate a 

reward among competing classifiers in the advocate set. The learning cycle and steady state 

analyses for the proposed learner are also given in this chapter. In Chapter 5, we extended the 
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application of FPN for dynamic clustering. A technique based on the principle of ecological 

niche expansion is applied for niche radius estimation. Then, a mapping between the number of 

peaks in a multimodal function and the number of clusters in the data is made and the fitness 

function is formulated. Simulation is done using both synthetic and real data. Chapter 6 discusses 

the simulation results. This chapter has two parts. The first part presents the simulation results 

for FPN. Comparison with existing niching techniques using well-known multimodal test 

functions presented in the literatures is given. The second part discusses the results for the 

evolution of hierarchical cooperation in classifiers. Comparison on whether other techniques are 

able to attain a default hierarchy; and are able to sustain it under the selection pressure of the GA 

is also investigated using control runs for the same simulation setup. Chapter 7 concludes the 

dissertation by highlighting the contributions of the work and pinpointing directions for future 

research. 
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CHAPTER 2  

Literature Review 

With the increasing complexity of real-world optimization problems, demand for robust, 

fast, and accurate optimizers in a wide variety of multi-dimensional, multi-objective and 

multimodal optimization problems is on the rise among researchers in various fields. In this era 

of huge amounts of digital data, efficient and robust computational methods are of utmost 

importance for knowledge discovery and information retrieval. Evolutionary algorithms (EAs) 

are a form of stochastic search that utilize selection and inheritance to discover near-optimal 

solutions to arbitrary problems. Evolution in artificial systems follows the same basic principles 

as those of natural populations. Each individual possesses a coded solution to a given problem; 

the genotype. The genotype is decoded into a phenotype, which is a description of an 

individual’s response to a given problem.  

In this chapter, a detailed review of the current state of the art on niching methods for 

EAs is provided. We will review related research work and highlight some of the bottlenecks in 

this area that previous research has not addressed. The chapter is organized into four sections. 

The first section will explore the research in multimodal function optimization. The use of 

niching for maintaining diversity in a population for discovering multiple peaks in a multi-modal 

fitness landscape will be detailed in the second section. A brief summary of the various niching 

techniques is given in this section. The third section summarizes previous research work on 

estimating the niche radius. The idea of a finite resource model where individuals with in a given 

niche radius share the resource of that niche is analogous to implicit sharing in classifier systems. 

The fourth section discusses the evolution of hierarchical cooperation in classifiers. Applications 

of the niching technique for clustering and the related issues are discussed in the last section. 
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2.1 Global Optimization Issues  

Unlike gradient based search techniques, which can be trapped in local optima, EAs are 

population-based global optimizers with a mechanism (using a mutation operator) to escape local 

optima. However, there is no guarantee of discovering the global optima every time. The chance 

of discovering the global optima depends on several factors, including the initial population 

setup, the type of fitness landscape (multimodality, ruggedness, deceptiveness etc ) and the 

degree of exploitation and exploration. In population based search algorithms (Genetic 

algorithms (GAs), tabu search, genetic programming (GP), and particle swarm optimization 

(PSO)), premature convergence has been a common issue. It arises due to loss of diversity in a 

population which is related to maintaining a good balance between exploitation and exploration. 

Losing diversity means approaching a state where all the solution candidates look similar. 

Exploration is discovery of new solutions from the search space. These solutions introduce 

diversity to the solution list enabling the search algorithm to get out of trap in local minima and 

hence, allowing the algorithm to discover better solutions. The mutation operator in GAs helps to 

discover new solutions by providing a mechanism to get out of local optima. On the other hand, 

exploitation improves currently known solutions by combining individuals. The cross over 

operator speeds up convergence by refining previously discovered solutions in the population. A 

balance between exploration and exploitation is very essential in population based search 

algorithms. Too much exploration (i.e. high mutation rate) destroys good solutions and would 

turn the search technique to a blind search. This delays convergence to optimum points in the 

search space. Also, too much exploitation (i.e. high crossover rate) leads to premature 

convergence and ignoring possibly better solutions located at distant areas of the problem space 

which have not been explored. Higher exploitation rate means higher convergence rate and 
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accepting the risk of not finding the optimal solution (as the search may get stuck at a local 

optimum).  

EAs are applicable to a wide range of problems with varied fitness landscapes. Simple 

EAs are effective in finding a single optimum of a unimodal fitness landscape (Jong, 1975). For 

instance in Figure 2.1, the function has one global optimum and the path to the optimum point is 

smooth. A more difficult problem arises when the function to be optimized is multimodal (see 

Figure 2.2) and has many local optima.  

 

Figure 2.1. A unimodal objective function with a smooth path to the global optimum. 

The optima in a multimodal fitness landscape may have different peaks unevenly 

distributed throughout the search space. EAs have an intrinsic drawback when dealing with such 

multimodal fitness landscapes to locate all optima simultaneously. This is due in part to the 

genetic drift (Asoh and Muhlenbein, 1994; Cioppa et al., 2007) that results from the selection 

pressure of a GA, operator disruption and selection noise and that drives the population to 

converge to the highest fitness. The drawback is also due to the evaluation mechanism, which 

computes the fitness of each individual in the population independent of the fitness of other 

individuals (Cioppa et al., 2004, 2007). So, to deal with multimodal fitness landscapes, EAs need 

x 

F(x) 
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to have a mechanism to maintain a diverse population by counterbalancing the effect of genetic 

drift. 

 

Figure 2.2. A multi-modal objective function with 4 unequal peaks. 

There is no general solution to premature convergence but possible solutions have been 

suggested in the literatures. The most popular include, restarting the process with a randomly 

initialized state, increasing the exploration rate (higher mutation rate for instance) and extending 

the duration of evolution by steering the search away from the already sampled or frequently 

visited areas using techniques like niching and implicit fitness sharing. The principle behind 

most of the existing diversity maintaining mechanisms is based on an analogy with natural 

ecosystems, which encourages the formation of species or niches, each representing candidate 

solutions (Forrest et al., 1993; Goldberg and Richardson, 1987; R. Smith et al., 1993).  

2.2 Niching Methods for Evolutionary Algorithms 

The motivation behind niching was to promote diversity in a population. Traditional GAs 

evolve the whole population towards convergence, i.e. individuals in the population soon 

become nearly identical. In other words, they suffer from early convergence and in the case of 

multimodal functions; GAs can only find one of the solutions. Hence effective implementation of 

F(x) 

x 
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niching is very crucial to the success of GAs in multimodal function and multi-objective 

optimization, machine learning and classification problems. Maintaining diversity in a 

population has two major advantages. First, it helps to avoid premature convergence and hence 

allowing sufficient exploration of the search space. The most important advantage of keeping 

diversity in a population is to discover multiple optima in multimodal function optimization. So 

far there are two major approaches to niching: preventing premature convergence by altering the 

selection operators in the GA and the multi-population strategy. Fitness sharing (Goldberg, 1989; 

Goldberg and Richardson, 1987), crowding (Jong, 1975), deterministic crowding (Mahfoud, 

1995) and clearing (Petrowski, 1996) techniques fall under the first category. The second 

approach includes multi-population GAs, island population models and forking where the 

algorithms subdivide the population into subpopulations and optimize locally. The need for 

maintaining useful diversity in a population to reduce the effect of genetic drift in the standard 

GA has been emphasized by several researchers in previous work (Deb and Goldberg, 1989; 

Goldberg et al., 1992; Horn et al., 1994; Mahfoud, 1995; Sareni and Krahenbuhl, 1998). To date, 

various niching strategies have been proposed in the literatures and this section presents a brief 

survey of the state of the art in the three most notable niching techniques: crowding, fitness 

sharing and clearing. 

2.1.1 Fitness sharing. Fitness sharing is the most well-known method for creating stable 

subpopulations of individuals around the multiple local or global optimum points in the search 

space (Goldberg et al., 1992; Goldberg and Richardson, 1987). The inspiration for adapting the 

sharing technique to traditional GAs emanates from natural ecosystems where individuals of the 

same species share a finite natural resource in an environment. The hierarchical organization of 

species in a competing world of limited resources is shaped by the location and distribution of 
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these resources. Traditional GAs assume an infinite resource model where there is no need for 

competition for resources and all individuals can comfortably coexist on the same peak and 

receive the same fitness that they would have if they were the only individual on that peak. 

Hence, in the case of multimodal functions of unequal peaks, all individuals tend to seek the 

highest peak and converge to that point. Also, in multimodal functions of equal peaks, the 

population will converge to one of the peak locations arbitrarily. The feasibility of resource 

sharing in evolutionary algorithms was first pointed out by Holland (J. Holland, 1975). But the 

first implementation of fitness sharing to model a resource contention within a simple GA was 

given by Goldberg and Richardson (Goldberg and Richardson, 1987). It is based on the idea that 

a point in a search space has limited resources which must be shared by all individuals that 

occupy similar search space (Davidor, 1991). As more and more individuals get attracted to the 

highest peak, the resource at that peak gets depleted and other lower peaks in the search space 

begin to attract individuals.  

Sharing in an Evolutionary Algorithm (EA) is implemented by scaling the fitness of an 

individual based on the number of “similar” individuals present in the population (Cioppa et al., 

2007; Goldberg and Richardson, 1987). It lowers each individual’s fitness by an amount nearly 

equal to the number of similar individuals in the population. The raw fitness of the individual is 

reduced by the number of similar solutions in the population belonging to the same niche 

(Goldberg et al., 1992; Goldberg and Richardson, 1987). Scaling an individual’s fitness is 

controlled by two operations, a similarity function, which measures the distance between two 

individuals in either the genotypic or phenotypic space, and a sharing function (Deb and 

Goldberg, 1989; Goldberg et al., 1992; Horn et al., 1994). The sharing function is shown in 

equation (2.1). 
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Here di,j is the distance between individuals i and j,  sh is the niche radius and the constant   is 

usually set to 1 for a triangular sharing function. And the niche count, ni is calculated by 

summing a sharing function over all individuals of the population as given in equation (2.2), 

where m is the number of individuals occupying the same niche. 

ni ∑ sh(di   

m

   

 (2.2) 

Now, the shared fitness of an individual i is calculated using equation (2.3). 

 sh i 
 i

ni
 (2.3) 

Where, Fi is the raw fitness of the individual.  

As can be seen from the equation above, the degree to which two individuals are 

considered to belong to the same niche is controlled by the sharing radius. And, the performance 

of the fitness sharing relies strongly on the proper choice of the niching radius. This is one of the 

limitations of the fitness sharing technique. In general choosing the optimum niche radius 

requires a priori knowledge of the distribution of the peaks in the objective function (Dick, 2010; 

Dick and Whigham, 2006). 

2.1.2 Crowding. The standard crowding method was first introduced by De Jong to 

promote useful diversity in the population to prevent premature convergence of the GA (Jong, 

1975). In this method, a fraction of the total population called the generation gap is allowed to 

reproduce at each generation. The crowding factor (CF) determines the number of individuals 

selected from the population for comparing the similarity of the new offspring. Similarity of 

individuals can be determined by means of a distance measure, either genotypic or phenotypic 
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distance between individuals. The new offspring then replaces the most similar individual taken 

from this randomly drawn subpopulation of size CF. Later, Mahfoud introduced a modified 

crowding technique termed “deterministic crowding” (Mahfoud, 1994a, 1995) to improve the 

standard crowding by introducing competition between children and parents of identical niches. 

In a deterministic crowding, the new offsprings replace the nearest (measured in phenotypic 

distance) parent provided it has a higher fitness. Deterministic Crowding is simple, fast and 

requires no additional parameters. Its weakness is that as species of higher fitness value always 

tend to win over species of lower fitness, it fails to provide sufficient restorative force to 

maintain diversity. Mengshoel and Goldberg introduced a probabilistic crowding to mitigate this 

shortcoming (Mengshoel and Goldberg, 1999). In this scheme, stronger individuals do not 

always win over weaker ones; rather they win proportionally to their fitness. 

2.1.3 Clearing. The clearing type niching is essentially similar in principle to the explicit 

fitness sharing technique. But, instead of uniformly distributing the resource to the entire 

subpopulation in a given niche, it allocates the whole resource only to the best members of the 

subpopulation. It is based on a winner-takes-all strategy where it preserves the fitness of the best 

individuals of each niche and resets the fitness of the others with in the niche radius (Petrowski, 

1996). This convergence to only one of the alternatives is undesirable in multimodal 

optimization of real problems, because we are interested in getting information about good points 

and better solutions. 

2.3 The Niche Radius Problem 

In a multimodal fitness landscape, the goal of a niching technique is to evolve the 

population in to stable subpopulations. The number of niches should map to the number of 

optimum points of the fitness landscape. The fitness sharing method has been the most popular 
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niching techniques proposed in the literatures. However, the success of the algorithm entirely 

depends on the appropriate choice of the niche radius. Using too small niche radius results in 

discovering too many fictitious niches while a too large radius cannot discriminates between 

neighboring niches which turns the niching technique to that of a simple GA. If a priori 

information about the fitness landscape (such as the number of peaks and the distance between 

them) is known, then estimating the niche radius would not be a problem. But in most of the real 

world problems, a priori information about the fitness landscape is not available. This puts a 

serious limitation on the practicability of the radius dependent sharing techniques (fitness sharing 

and clearing schemes). This limitation has inspired previous research to go in two main 

directions in the past. One area of research has primarily focused on discovering alternative ways 

of niching techniques. Spatially structured GAs (Dick, 2010; Dick and Whigham, 2008), 

clustering based niching techniques (Ando et al., 2005; Streichert et al., 2004; Zhang et al., 

2006), crowding GA (Jong, 1975), deterministic crowding (Mahfoud, 1995), a species 

conserving genetic algorithm (SCGA) (Li et al., 2002) and many others fall  under this line of 

research. These methods do not consider any sharing scheme. In deterministic crowding, 

diversity is introduced to the population through a guided replacement (i.e. parents are replaced 

by offsprings only when the offsprings have a better fitness) (Mahfoud, 1994a, 1994b). SCGA 

maintains the fittest individual for each species until a fitter individual for that species is 

discovered in a later iteration (Li et al., 2002).  

The second research direction has entirely focused on how to estimate the niche radius 

dynamically. Deb and Goldberg, proposed a technique for estimating the niche radius given the 

heights of the peaks and that their distances are known a priori (Deb and Goldberg, 1989). This 

approach is very limited as in most real applications there is very little prior knowledge about the 
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fitness landscape. In implicit fitness sharing (R. Smith et al., 1993), similar individuals in a 

population compete for limited and explicit resources with no limitation on the distance between 

peaks. Though there is no need of estimating the niche radius  the algorithm’s performance 

depends on appropriate choice of other parameters such as the size of the sample of individuals 

that compete, the number of competition cycles and the definition of a matching procedure.  

Miller and Shaw developed a dynamic niche sharing technique that is able to efficiently 

identify and search multiple niches in a multimodal domain (Miller and Shaw, 1996). The 

algorithm attempted to identify the multiple peaks dynamically to classify all individuals as 

either belonging to one of these dynamic niches (if individuals are within the niche radius of a 

dynamic peak  or else belonging to the “non-peak” category. The authors claimed a better 

performance as compared to the standard sharing and deterministic crowding techniques. The 

algorithm still shares the drawback of the standard sharing method as it made assumptions on the 

number of niche peaks and the distance between them, which in most real scenarios are not 

known a priori.  

In (Shir and Back, 2006), the authors introduced the concept of adaptive individual niche 

radius to address the niche radius problem . The idea brings a new representation where the niche 

radius is encoded as part of the chromosome structure of each individual and adapts along with 

other parameters during the course of evolution (Shir and Back, 2005; Shir et al., 2007). 

A dynamic niche identification technique based on the characterization of the dynamic 

behavior of the evolutionary algorithm in terms of the mean and standard deviation of the 

number of niches discovered during the evolution was proposed in (Cioppa et al., 2004, 2007). 

By varying population size and the niche radius iteratively and observing the pattern of the 

variation of the mean and standard deviation at each generation, they gave an estimate on the 
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optimal values of the population size and the niche radius without any a priori information on the 

fitness landscape. The dynamic niche identification technique proposed does not make any 

assumption on the priori knowledge of the fitness landscape but it is still based on knowing the 

number of peaks. The applicability of this algorithm is limited especially when the search space 

is too big and the fitness landscape is too rugged, as iteratively varying the niche radius would 

involve too much computation. In addition, the algorithm is very subjective and it is difficult to 

accurately estimate the optimum value of the niche radius by simply looking in to the variation 

of the mean and the standard deviation.  

The authors in (Chang et al., 2010) introduced a dynamic identification of the niches 

based on the idea of niche migration to automatically evolve the optimal number of niches. The 

algorithm requires only an initial guess of the niche radius, possibly set to the minimum value 

that could at least result in the prevalence of two niches. The idea of niche migration is based on 

the analogy of population dynamics that when a given city is crowded people in that city start 

migrating to a nearby city (Chang et al., 2010; Chang et al., 2011). The technique was 

successfully applied to data clustering with no assumption on the number of clusters and the 

distribution of the data (Chang et al., 2011).  

The Adaptive Isolation Model (AIM) introduced in (Streichert et al., 2004) used a 

clustering algorithm to identify different regions of attractors and then the subpopulation that 

makes up the clusters are isolated and optimized independently. It was claimed that the algorithm 

is both efficient (since crossovers will only include parents from the same attractors reducing the 

number of offspring sampled outside of the attractors) and comprehensive (the chance of 

discovering a suboptima in weaker attractors increases by isolating strong attractors). This 

algorithm is based on the assumption that for a multi-modal fitness landscape the GA distributes 
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the population among the different attractors. This however requires some form of diversity 

preserving mechanism (e.g. crowding or some other form of inducing diversity). 

There is quite a limited research on dynamically estimating the niche radius. The earlier 

work was by Deb and Goldberg (Deb and Goldberg, 1989). The authors made a comparison 

between crowding and fitness sharing methods and an estimate on the niche radius was also 

given. The estimation on the niche radius was based on the assumption that number of peaks in 

the fitness landscape is known a priori. Dick also proposed a local clearing technique for 

automatic adaptation of the niche radius for spatially structured population (Dick, 2010; Dick 

and Whigham, 2006, 2008). In our implementation, we used a modified version of the dynamic 

niche identification techniques introduced by the authors in (Chang et al., 2010) to estimate the 

niche radius. 

2.4 Evolving Hierarchical Cooperation in Classifiers 

2.4.1 LCS overview. A Learning Classifier System (LCS) is a machine learning 

paradigm where an agent learns to perform a certain task by interacting with a partially known 

environment via guidance of a reward signal that indicates the quality of its action (J. Holland, 

1980; R. Smith and Goldberg, 1990). Classifiers are rules in the form of “if condition then 

action” format. In an LCS, the solution domain initially contains a large population of candidate 

classifiers. The learning process begins with this random population and needs to evolve it to 

optimal solutions through training. The goal of the classifier in the learning process is to 

accumulate as much reward as possible. The reinforcement learning guides the search for 

solution by rewarding classifiers that propose a correct action. 

Holland’s formulation of LCS involves a bucket brigade algorithm that takes care of the 

credit assignment task in LCSs (J. Holland, 1985; J. Holland and Holyoak, 1988). Each classifier 
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is assigned a strength that is adjusted by the bucket brigade algorithm in such a way that it 

reflects the classifier’s overall usefulness to the system (Booker et al., 1990; J. Holland and 

Reitman, 1977). In the bucket brigade, classifiers that match to the current input bid for posting 

their message in the message list (J. Holland, 1985). The message list allows classifiers to 

communicate directly with each other through paying and charging of a reward (J. Holland, 

1992; J. H. Holland, 1995). The learning objective in LCSs can be very general, for instance to 

survive. Unlike most reinforcement learning algorithms, LCSs do not make any particular 

assumption on the environment and on the agent’s goal which is generally defined in terms of 

adaptation to the environment (Kovacs, 2004).  

There are two major types of LCS: Michigan and Pittsburgh style LCSs. The 

classification is based on their advocator’s affiliation (University of Michigan and University of 

Pittsburgh respectively). In the Pittsburgh formulation of LCS, individuals in a population are 

complete solutions to the problem (Bacardit 2004; S. Smith, 1980). An individual is a rule set 

and the length of a rule is fixed while the number of rules in one rule set varies. Individuals in 

the population compete among themselves to correctly classify the training samples. The 

working principle of Pittsburgh LCSs is essentially similar to GA. The fitness of an individual in 

the population is measured by the classification accuracy of the rule set (Bacardit et al., 2007). 

But in Michigan style LCS, individuals are rules and the solution to the problem is the whole 

population. An individual rule covers part of the solution and coordination among rules and a 

mechanism to evaluate the performance of rules in the form of reward or punishment is essential. 

The use of the term LCS in this work adheres to Michigan style LCS. The standard LCS consists 

of three major components: the message and rule system, the apportionment of credit and the 

discovery component (Booker et al., 1990; J. Holland, 1980, 1986).  
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The apportionment of credit subsystem in an LCS addresses the issue of credit 

assignment which serves as a measure of the classifier’s performance. It is based on an economic 

analogy where a classifier garners credit in the form of strength (a kind of capital). It involves a 

bid competition among classifiers that match to the current environmental input. Accordingly, 

matched classifiers bid a certain proportion of their strength and rule conflicts are resolved based 

on a probability distribution over the bids (R. Smith and Goldberg, 1990). A winner classifier has 

to pay out all its debt through the clearing house hence risking a certain percentage of its strength 

with the possibility of getting a reward. Also, to promote the exploration of the classifier space, a 

random noise is added to the deterministic bid (Homaifar et al., 1988). In this system, classifiers 

communicate with each other through the message list in addition to directly interacting with the 

environment. Many of the variants of classier systems are alternative schemes for apportioning 

or accumulating credit. 

An LCS uses a GA as a search engine to discover new rules from a population of 

candidate rules based on the experience of existing rules. GAs are a class of computerized search 

procedures that are based on the mechanics of natural genetics (Goldberg, 1989). However, the 

GA used in an LCS is different from a standalone GA. Consider for instance the problem of 

“function optimization”. In a standalone GA, the intention is to find parameter settings which 

correspond to the extremum of the fitness function. There is no notion of generalizing across 

states and no need for a measure of the accuracy with which this is done. Also, there is no 

concept of environmental state (i.e. the GA structure lacks the condition part of the classifier). It 

only manipulates a set of parameters corresponding to the action part of a classifier. So a 

standalone GA is a function optimizer that seeks for points of maximum functional value in the 

search space, whereas the GA in an LCS serves as a function approximator (Kovacs, 2004). 



27 

 

Since its first conceptual inception by John Holland in 1976 (J. Holland, 1976), the LCS 

idea has stimulated a number of investigations of its merit for some real-world applications such 

as gas pipeline control (the first application) (Goldberg, 1983), Boolean function learning 

(Wilson, 1985), sequence prediction (Robertson and Riolo, 1988), letter recognition (Frey and 

Slate, 1991) and job-shop scheduling (Hilliard et al., 1987). The basic structure of an LCS is 

depicted in Figure 2.3.  
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Figure 2.3. The structure of a learning classifier system. 

The LCS detects its environment through its detectors and takes appropriate action with 

the help of its effectors. During the learning phase, a feedback signal is provided by the 

environment in the form of a reward or punishment to guide the learning system. In application 

mode, no external feedback is provided and the LCS applies its knowledge to predict the 

environment in the form of an action when triggered by a given input.  

To date, several modifications have been made to the traditional LCS. Wilson introduced 

a strength based learning classifier system known as the zeroth-level classifier system (ZCS) in 

1994 (Wilson, 1994). A year later, he introduced accuracy based classifier system (XCS) which 

brought a major change in an LCS's rule fitness calculation (Wilson, 1995). The fitness is made 

to represent the accuracy of the prediction instead of the prediction itself. Hybrid techniques, 
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such as fuzzy-xcs are also proposed for single step reinforcement problems (Casillas et al., 

2007). XCS maintains in the population both classifiers that consistently receive high reward and 

those that consistently receive low reward. As a result, it usually requires a higher population 

size as compared to strength-based fitness, which keeps only classifiers receiving high reward in 

the system (Butz et al., 2004).  

In strength based LCSs, the past performance of a classifier is measured by the amount of 

its current strength. Strength is used as a means of resolving conflicts and as a fitness for the 

genetic algorithm. In our previous work, we introduced a modified bidding strategy in LCSs by 

allowing classifiers to get a loan from a loaning agent termed a ‘bank’ during auctions 

(Workineh and Homaifar, 2011). The loaning approach followed was centralized in the sense 

that there is only one central bank issuing the loan. A bid history variable that gives classifiers a 

clue about the potential of competent classifiers was also introduced. We also implemented a 

more compact, less complex and more realistic distributed loaning strategy that allows a loan 

exchange among classifiers to play a dual role (loaners and borrowers) among classifiers in the 

systems (Workineh and Homaifar, 2012c). The generalization capability of an LCS by means of 

using hash symbols in its condition string gives it the potential to develop a compact 

representation of the concepts learned. 

2.4.2. Default hierarchy. Smith and Goldberg (R. Smith and Goldberg, 1990) introduced 

a modified bidding strategy to allow the formation of default hierarchies. The bid amount is 

made proportional to the specificity of the classifier’s condition to allow more specific classifiers 

to fire instead of more general inaccurate classifiers. It was also indicated that incorporating a 

specificity factor in to the bid computation does not enable the LCS to distinguish between 

default and exception rules at steady state. To alleviate this shortcoming taxation was introduced. 
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Tax in an LCS has a dual purpose: to eliminate classifiers that serve no purpose but whose 

strengths are not low enough to qualify them for deletion by the GA and to provide a separation 

between default and specific classifiers at steady state. Besides, the authors suggested a necessity 

auction to improve the LCS’s simulation of auction dynamics and to induce bid separation that 

responds to the entire system’s performance (R. Smith and Goldberg, 1990; R. Smith and 

Goldberg, 1992).  

2.4.2.1 The starvation–protection dilemma. The starvation-protection dilemma has been 

a bottleneck to research in attaining a working default hierarchy. The intention here is to protect 

the default rule from firing when it is wrong without starving it. This requires a bidding strategy 

that favors the exception when both match a given input. In (J. Holland et al., 2000; Riolo, 1987; 

R. Smith and Goldberg, 1990), a bid amount proportional to the specificity is proposed. In this 

kind of bidding strategy, exception classifiers bid a higher amount as compared to more general 

classifiers in the system. The shortcoming of this type of protection (in a standard LCS) is the 

consequent starvation of the default classifier when it is right. Protection is always associated 

with an immediate starvation of the default. 

In the standard formulation of LCS, starvation can happen in two ways. One is when a 

more specific classifier having the same action as the default out bids the default and hence 

prevents it from entering the active set and possibly getting a payoff (J. Holland, 1980; R. Smith 

and Goldberg, 1990). The active set is a subset of the match set that contains the highest bidding 

classifiers. The specific classifier tends to flourish in the population as a result of getting a payoff 

from its environment. The other scenario is when an exception classifier with a wrong action 

bids with the default classifier of the correct action. The exception classifier may prevent the 

default from entering the active set again. In effect, the default has to wait until the exception 
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classifiers with wrong action die out of the system. But, as the default always belongs to the 

match set, it incurs an overhead tax at every computation time. Both scenarios prevent the 

default from firing and possibly receiving a boost in its strength in the form of a reward from the 

environment. Thus, starvation augmented with continuous taxation continuously weakens the 

default classifier until it is eventually eliminated by the GA. In such circumstances, a hierarchy, 

even if emerges some time along the learning process, is unlikely to survive the selection 

pressure of the GA.  

2.4.2.2 Extending decision making to the match set. The objective is to allow the default 

classifier to take over the decision making every time it is right. To avoid the starvation problem, 

Wilson, in a detailed experiment using Boole (Wilson, 1989), proposed key modifications to the 

standard LCS formulation. One remedy to avoid starvation is extending system decision to the 

match set instead of limiting them to the active set. In Holland’s formulation of LCS, only 

classifiers in the active set make decision on the system and any reward by the external 

environment goes to the active set. Wilson’s experiments proved that extending the decision 

making and resource sharing scheme to a rather bigger set of classifiers (the match set) improves 

the system’s performance. The default is always part of the match set and an external reward is 

distributed among all classifiers in the match set proposing the same action as the winner 

classifier. This effectively avoids starvation of the default due to outbidding of other specific 

classifiers in the system to qualify for the active set. As far as its action agrees with the winner’s 

action, it always gets a fraction of the reward coming from the external environment. But, under 

the same bidding and paying policy as proposed in (R. Smith and Goldberg, 1990; R. Smith and 

Goldberg, 1992) and (Riolo, 1987), omitting the active set may lead to rampant 

overgeneralization. To overcome this problem, Wilson suggested a different bidding and paying 
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policy in which specificity is retained in the bid calculation but eliminated when calculating the 

classifier’s payout (J. Holland et al., 2000; Wilson, 1989). The bid amount is scaled by the 

specificity while the actual pay out of the classifier depends entirely on its strength and the bid 

coefficient. 

2.4.2.3 The need for niching. In Michigan type LCSs, the GA searches through the space 

of all possible rules to find and maintain a diverse, cooperative subpopulation. On one hand, an 

LCS requires the strong selection pressure of the GA to discover new rules. On the other hand, 

without some form of niching, the LCS cannot maintain a diverse set of cooperative rules in the 

population due to the selection pressure of GA. Niching provides a restorative force to balance 

the selection pressure that causes early convergence by maintaining useful diversity in the 

population (Horn and Goldberg, 1996). Maintaining a diverse set of cooperative rules is 

particularly important for the formation of default hierarchies and for temporal rule chains. 

Many researchers have pointed out the importance of implicit (reward sharing) and 

explicit (fitness sharing) niching for the evolution of cooperative classifiers. In previous work, 

Booker (Booker, 1982, 1989) implemented niching using an indirect form of sharing and 

introduced mating restrictions to limit mixing between niches. Wilson applied implicit niching in 

LCSs by uniformly distributing a reward among classifiers that agreed with the system decision 

for learning a Boolean concept. Smith and Valenzuela-Rendon later proposed explicit niching in 

LCSs by applying fitness sharing using a hamming distance as a metric to find the niche radius 

on the space of rules (R. Smith and Valenzuela-Rendón, 1989). Mahfoud also applied explicit 

niching for GA-based classification of Boolean concepts which is analogous to a stimulus 

response LCSs (Mahfoud, 1995). The model of a stimulus-response LCS is similar to the natural 

immune system. The analogy between implicit niching in the immune system and resource 
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sharing in an LCS is also analyzed by the authors in (R. Smith et al., 1993). Horn and Goldberg 

also stressed the importance of niching and gave a model to approximate the niche existence and 

extinction times (Horn et al., 1994). Assuming a two niche scenario and all classifiers have the 

same specificity, the authors demonstrated that the dynamics of an interacting and coevolving 

population can be analyzed, predicted and controlled. The environment provides a reinforcement 

signal to the learning system when it responds correctly. In a stimulus-response LCS, the system 

takes action on its environment directly and receives an immediate reward or punishment as a 

consequence of this action (Booker, 1982; Booker et al., 1990).  

There are two major notions on how to distribute the reward among classifiers in the 

active set. Holland first suggested that all classifiers in the active set should receive a constant 

reward R and pay out their bid (J. Holland, 1980; J. Holland and Reitman, 1977). This notion of 

sharing however does not lead to the formation of a default hierarchy as it does not distinguish 

between correct and wrong classifiers. The limitation of this kind of reward sharing on the 

formation of default hierarchy can be explained as follows. Consider for instance a scenario 

where a default classifier of action zero exists in the system. Assume also that its strength is high 

enough to outbid other specific classifiers in the match set and join the active set. This classifier 

may or may not agree with the winning classifier’s decision but is going to receive a reward from 

the environment either way. This kind of indiscriminate rewarding leads to the emergence of 

sneaky classifiers that survive on the back of other reward generating classifiers and take over 

the system. 

To overcome this shortcoming, Wilson suggested that reward should be shared only 

among classifiers that agree with the system’s decision. Wilson’s sharing scheme assumes a 

fixed amount of external reward R to be divided evenly among all classifiers in the advocate list 
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(Wilson, 1989). The advocate list consists of classifiers in the match set that propose the same 

action as the winner classifier.  

The theory of equal reward sharing ignored the whole notion of competition in an LCS. 

The intention of a classifier is to build up its strength by garnering as much reward as possible 

from its environment. A good analogy here would be a competitive market economy where 

whoever strived hard should be rewarded and accumulate wealth. Wealth in classifiers is 

measured in terms of strength. Hence instead of using equal resource sharing, the rewarding 

scheme should somehow be biased towards stronger classifiers. Strength is a measure of the 

quality of a classifier and the rewarding scheme has to adjust the strength to reflect the 

classifier’s overall usefulness to the system. We applied a fitness proportionate resource sharing 

scheme where classifiers proposing the same action as the winner will get credit in proportion to 

their strength. The proposed rewarding scheme resulted in a remarkable improvement in the 

performance of the system and produced a viable and robust default hierarchy. 

 



34 

 

CHAPTER 3  

Fitness Proportionate Niching (FPN) 

Traditional Genetic Algorithms (GAs) fail to maintain useful diversity in the population 

as a result of a genetic drift due to selection pressure, selection noise and operator disruption. 

Genetic drift leads to early convergence making simple GAs suitable only for optimizing 

unimodal functions. However, most real world optimization problems often deal with multi-

modal functions and hence require a technique to discover the location of multiple optima in the 

search space. The conventional fitness sharing scheme based on the niche count has a limitation 

when there is a high gap between the peaks of the multimodal function. It requires a high 

population size in order to discover all the peaks simultaneously. The use of high population size 

makes it computationally complex, especially when there is a big jump in fitness values of the 

peaks.  

FPN provides a solution to this limitation by uniformly distributing the population along 

the various peaks. Like the traditional fitness sharing based on niche counts, this technique is 

also based on the notion of limited resources where individuals in a given niche share the 

resource of that niche. But, here individuals share the resource in proportion to their actual 

fitness. Unlike the conventional sharing scheme, the difference in the fitness values of the 

highest and lowest peaks does not affect the performance of the proposed niching scheme. This 

chapter presents a comparison of the two techniques using both mathematical analysis and 

simulations on well-known multi-modal test functions. A technique for estimating the niche 

radius, complexity analysis and ecological analogy of the proposed niching technique are also 

provided here. The last section presents a chi-square like deviation comparison for some of the 

test bench functions in the literatures.  
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3.1 Test Functions 

For testing the performance of the algorithm, multimodal functions of different difficulty 

level (see Figures 3-1 to 3-5) are used from literatures during simulations (Cioppa et al., 2004, 

2007; Deb and Goldberg, 1989; Sareni and Krahenbuhl, 1998). The mathematical expressions 

for these functions are given in equations (3.1) to (3.5).  

   a(x) sin
 
(  x  (3.1) 

 

Figure 3.1. Fa(x)-a multimodal function with 5 equal peaks. 

Most of the functions (Fa(x) to Fd(x)) are one dimensional and defined on the interval [0, 

1]. The first three functions have 5 peaks located at approximate values of 0.1, 0.3, 0.5, 0.7 and 

0.9. Fa(x) has equal peaks whereas Fb(x) and Fc(x) have unequal peaks (equations (3.1) to (3.3). 
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Figure 3.2. Fb(x)-a multimodal function with 5 unequal peaks. 
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In Fc(x), there is a big gap in the fitness values of the highest and smallest peaks. The 

location of the highest peak tends to attract a significant proportion of the population. Fd(x) has 

10 peaks unevenly distributed over the search space. The two-dimensional shekel foxhole 

function (Fe(x)) has 25 peaks over the interval [-40,40]. 
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Figure 3.3. Fc(x)-a function with 5 unequal peaks with high fitness variation. 
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Figure 3.4. Fd(x)-a multimodal function with unevenly distributed peaks. 
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Figure 3.5. Fe(x)-Shekel's foxhole function. 

3.2 Mathematical Formulation 

In FPN, sharing is in proportion to actual fitness and hence the niche count of an 

individual i is given by equation (2.1) and its shared fitness is given by equation (3.7).  

sh(di    {
f     if di      sh

   otherwise
 (3.6) 

fsh  i 
fi

∑ sh(di   
M
   

 (3.7) 

Where, M is the number of individuals in a given niche, fi is the raw fitness and fsh,i is the shared 

fitness and di,j is the phenotypic distance between individuals i and j.  

The feasibility of the proposed niching scheme can be verified both mathematically and 

using simulation. It can be demonstrated analytically that FPN is indeed insensitive to the 

difference in fitness of the peaks. Like every other population based stochastic search algorithm, 
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GAs also require a certain reasonable population size for sufficient exploration of the search 

space. It can be shown that unlike the traditional fitness sharing, the FPN will tend to form a 

stable subpopulation around all the niches with no additional restriction on the size of the 

population for multi-modal functions of unequal peaks.  

To get an insight on the performance improvement of  PN over T S  let’s consider a 

multimodal fitness landscape with M unequal peaks with F1 and FM being the minimum and 

maximum fitness values of the peaks respectively. Let the subpopulation size at each of the 

niches be denoted by n1 to nM respectively and N be the population size.  

Using the traditional fitness sharing scheme, the shared fitness of an individual i in the k
th

 niche 

at steady state is given by equation (3.8) (Goldberg and Richardson, 1987). 

  
  
 k

nk
 (3.8) 

Assuming that after sufficient iteration almost all the population distributes around the M peaks, 

we get equation (3.9). 

n  n     nM N (3.9) 

To discover all the peaks, it is required that the shared fitness values at each niche should 

be approximately equal (i.e. f’1=f’2=. . f’M).  

Substituting and rearranging terms, the number of individuals at the k
th

 niche is governed by 

equation (3.10) 

nk 
 k
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But using FPN, the shared fitness of an individual in the k
th

 niche is given by equation (3.11).  

 k
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Where, nk is the subpopulation size at the k
th

 niche (location of a peak). After sufficient 

generations, individuals in each niche will have approximately equal fitness (i.e. fi=fj, for two 

individuals i and j in the same niche). Hence a simplified form of equation (3.11) is shown in 

equation (3.12). 

fk
 
 
 

nk
 (3.12) 

From equation (3.12), for the shared fitness values to be equal, the population has to be 

evenly distributed among all the peaks, irrespective of the difference in the fitness value at the 

peaks (i.e. n1=n2 ….  nM=N/M). So, for a multimodal function having M peaks, the expected 

number of individuals at the k
th

 peak using TFS scheme is given by equation (3.13). But FPN 

distributes the population around the optimum points uniformly as shown in equation (3.14).  

nk 
 k

∑  i
M
i  

 N (3.13) 

n  
N

M
 (3.14) 

It can be observed that, for a multimodal function with equal peaks (e.g. Fa(x)), equation 

(3.13) would degenerate to equation (3.14). Hence, for multimodal functions with equal peaks, 

FPN is essentially the same as the traditional sharing scheme. The underlying principle in FPN 

considers all the peaks as equally important for the GA and hence the proportion of the 

population at the different peaks does not really matter. This makes sense because from the 

perspective of the GA, what is important is whether the niching scheme is able to form a stable 

sub population around all the multiple optimum points. Once all the peaks are discovered, a 

preference between the different peaks can be made by arranging the final population based on 

the fitness values. 
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3.3 Complexity Analysis 

Performance speed in GA depends on the population size. The higher the population size, 

the more computation time it takes for the GA to converge to the optimum points. Let Pmin be the 

minimum size of a niche ( i.e, the minimum number of individuals a niche needs to have) and 

PFPN and PTFS be the population size for the FPN and TFS algorithms respectively.  

As discussed in the previous section, FPN distributes the population uniformly at each of 

the peaks (see equation (3.14)). Hence, the lower bound of the population size required by the 

FPN algorithm to discover all the peaks is given by:  

P PN M Pmin (3.15) 

And for the TFS, we know that the subpopulation size at each of the niches is proportional to the 

fitness values of the niches. Hence, the population size at the minimum peak (P1 in this case) is 

given by: 

P  
  

∑  i
M
i  

 PT S (3.16) 

Which means the lower bound population size for TFS is given as follows: 

PT S P  
∑  i
M
i  

  
 (3.17) 

The niche with the lowest fitness value needs to have at least Pmin individuals to be 

considered as a valid niche. Hence, equation (3.17) becomes  

PT S Pmin 
∑  i
M
i  

  
  (3.18) 

This indicates that the traditional sharing scheme based on the niche count has a threshold 

requirement on the minimum population size to discover all the peaks when the objective 

function has unequal peaks. As the gap of the peak values increases, the required minimum 

population size also increases drastically. 
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Comparing equations (3.15) and (3.18), we get equation (3.19). 

PT S

P PN
 
∑  i
M
i  

M   
   (3.19) 

From equation (3.19) it can easily be observed that FPN and TFS require the same 

population size for a multimodal function of equal peaks. However, for a rugged fitness 

landscape with large variation in fitness values of the peaks, the ratio in equation (3.19) becomes 

very large. Consider for instance a two peak scenario where the highest peak is C times the 

smallest one (i.e. F2=C*F1, where C is a constant greater than 1). Then, the ratio in equation 

(3.19) is simplified as shown in equation (3.20).  

PT S

P PN
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   (3.20) 

For instance, if F2 is 3 times higher than F1 equation (3.20) then indicates that FPN runs twice 

faster than TFS.  

For the test functions Fb(x) and Fc(x) given above, M=5, F1=0.251, F2=0.45, F3=0.7, 

F4=0.91 and the value of F5 is 1 for Fb(x) and 10 for Fc(x). Fc(x) has a large fitness gap between 

its highest and lowest peaks. If a niche size of at least two individuals is required at the lowest 

peak (i.e. n1>=2) and substituting in the values, the expected subpopulation size at F1 for Fb(x) is 

given by equation (3.21). 
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 (3.21) 

This implies that for the niching technique to locate all the peaks of Fb(x), a population 

size of at least 27 is required. In practice, the desired population size has to be much larger than 

this ideal mathematical threshold. The optimum population size to discover all the peaks is 
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largely dependent on the ratio of the fitness at the peaks. The higher the fitness ratio between the 

peaks, the larger is the size of the population required to discover all the peaks. This is more 

evident in Fc(x). Fc(x) has a much higher fitness gap between its highest and lowest peaks as 

compared to Fb(x). 

Using the same expression given above and substituting in the numerical values Fc(x), the 

expected number of individuals at F1 will be: 

n  
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 (3.22) 

Quantitatively speaking, a population size of at least 100 is required to have at least two 

individuals at the lowest peak (F1). FPN overcomes this requirement on the minimum size of the 

population by uniformly distributing the total population among the various peaks, irrespective 

of the difference in the fitness value. From equation (3.15), it only requires a population size of 

at least twice the number of peaks to have at least two individuals at each of the niches (i.e. one 

tenth of the population size required by the traditional sharing scheme in this particular 

example). 

3.4 Performance Criteria 

To verify the performance of FPN and compare it with the existing approach, three main 

criteria are used in literatures. The first criterion is the percentage of number of peaks discovered 

by the niching algorithm as a function of search cycle (generation). This, in effect is equivalent 

to comparing the ratio of the sum of the fitness of the local optima identified by the niching 

technique divided by the sum of the fitness of the actual optima in the search space. The second 

criterion is the distribution of the population around the optimum points. This shows whether the 
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niching technique is able to evolve a stable and diverse subpopulation. Another way of 

evaluating the performance of a niching technique is to measure the deviation of the actual 

population distribution from the expected population distribution. This is commonly called the 

chi-square like distribution and is discussed in the next section.  

The goal of any niching technique in a multimodal optimization is to discover all the 

unique niches corresponding to the optimum points that prevail in the fitness landscape. The 

standard error measures the deviation of the number of niches discovered at each generation 

from the expected number of niches. The simulation is repeated for a total of R runs each time 

storing the number of niches discovered in a matrix of R rows and G columns. Then, the 

expected number of niches and the standard error are calculated using equations (3.23) and 

(3.24).  
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Where V(g) and E(g) are the mean and standard error at generation g, Wr,g is the number of 

niches discovered at the r
th

 experiment and g
th

 generation, G is the number of generations, R is 

the number of times the simulation is repeated.  

3.5 Ecological Analogy 

The sharing technique introduced here has its inspiration from species interaction in 

biological ecosystems. Ecological niches maintain diverse species where similar individuals 

share the resource of that particular ecological niche. The traditional sharing technique is based 

on the notion of spatial distribution of species following the location of a given resource. There 
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is no diversity in the type of the individuals in the species. The traditional GA assumes the 

resource of a niche is infinite and hence a niche with the highest fitness value can accommodate 

all of the population. The whole population then rushes to converge to the global optimum losing 

diversity and hence premature convergence. The sharing concept is based on a finite resource 

model (i.e. the resource of a given niche is finite). Higher peaks in the fitness landscape attract 

more individuals and as more and more individuals come to that location, the resource of that 

particular niche gets depleted and niches of smaller fitness value tend to attract other individuals 

in the population.  

FPN is also based on a finite resource model approach. The underlying principle in FPN 

is analogous to an ecological system that embraces diverse species sharing a non-uniform 

environmental resource (for instance, in an ecosystem antelope, hyenas and rhinoceros can 

occupy spatially different locations consuming different amount of the same resource, water for 

example). Diversity is not only in spatial distribution but also in the type of individuals. Under 

such an analogy different amount of the same resource can support equal number of different 

species (for instance, a 10 meters cube of water may support 3 lions whereas 6 meters cube of 

water may suffice to support the same number of dogs for the same duration). The non-

uniformity in the distribution of a resource is accounted by the multi-modal fitness landscape 

with unequal peaks. Unlike, the traditional sharing scheme where most of the population 

converges at a niche of more resources, FPN distributes equal number of different individuals 

along the various peaks. This approach makes sense because from the perspective of the GA, 

what is important is whether the niching scheme is able to form a stable subpopulation around all 

the multiple optimum points. In other words, FPN considers all the peaks as equally important 

and hence the subpopulation size is independent of the fitness of the peaks. 
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Figure 3.6 shows an ecological analogy where a different amount of a resource (F1 to F4) can 

support equal number of (N) individuals of different species. 

3.6 Dynamic Niche Identification with Niche Expansion (DNINE) 

As pointed out earlier in this dissertation, the performance of both the clearing and fitness 

sharing types of niching is highly dependent on the use of proper values of the niche radius, 

population size and the number of peaks of the multi-modal function. That requires a priori 

knowledge of the search space and fitness landscape which makes their application to optimizing 

most real world problems nearly impossible.  

 

Figure 3.6. Ecological analogy for a multimodal fitness landscape. 
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Without an accurate estimate of the niche radius and knowledge of the number of peaks 

and the gap between them, the performance of the TFS and clearing techniques can be very 

dismal. Particularly, a correct value of the niche radius is very important for the sharing 

technique so as to maintain a stable and diverse subpopulation at the various peaks. For a higher 

niche radius, the sharing technique cannot discriminate between neighboring niches, while a very 

small radius value will lead to the creation of false niches and reduce the overall performance of 

the technique. Our niching technique, though it is insensitive to the difference in the fitness 

values of the various peaks, still relies on the accurate estimation of the niche radius. In our 

work, we applied a modified version of the dynamic niche identification technique proposed in 

(Chang et al., 2010). The algorithm is based on the idea of population dynamics in a given city. 

When a city is crowded, scarcity of resource and living cost motivates part of the population to 

migrate to nearby cities or leads to the emergence of new cities. Similarly, when a niche is 

overcrowded part of its population migrates to nearby niches. There is no niche migration in our 

implementation. Instead, the idea of niche expansion is applied by merging two niches when 

there is no valley between them. The algorithm starts with a small initial niche radius and 

subdivides the population based on this radius. Normally, the use of a small niche radius results 

in the formation of fictitious niches. Niche refining is done using the niche expansion principle 

(merging any communicating niches) to identify actual niches that prevail in the population. To 

clarify the working principle of the niche expansion technique, we provided the definition of 

related terminologies below. The algorithmic implementation of the DNINE algorithm is given 

in Appendix A.  

Definition 1: Niche Master. Each niche (subpopulation) is represented by its master. The 

niche master of a given niche is the individual with the highest fitness in that particular niche.  
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Definition 2: Distance between Niches. The distance between two niches is defined as 

the distance between their niche masters. Suppose Mi and Mj be the two niche masters of Ni and 

Nj, then the distance between these two niches is calculated using equation (3.25). 

 n(Ni N ) d(Mi M ) ‖Mi M ‖
 
 (3.25) 

And the line that intersects the two niche masters can be expressed using equation (3.26). 

  Mi k(M  Mi   where k       (3.26) 

Definition 3: Communication between Niches. Two niches are said to be 

communicating with each other when there is no valley between them. To check whether there is 

a valley between the two niche masters, a series of points (x1, x2,… q ) are generated between the 

two niche masters. If there exists a point xm that satisfies the inequality in equation (3.27), then 

there exists a valley between the two niches and hence there is no communication between them.  

f(xm) min(fi f ) (3.27) 

Where fi and fj are the fitness values of niche masters i and j respectively.  

Absence of communication between the two niches indicates that the two niches are 

actual independent niches and they should be maintained in the population. However, if there is a 

communication between niches, it means that both niches are on the same side of a valley and 

possibly they can be merged. If no point has lower fitness than either of the end points, then it 

indicates that no valley lies between the two niches. The core idea behind the niche expansion is 

that niches with no valley in between can be merged and a new niche master representing the 

bigger niche is selected.  

In Figure 3.7, M1 and M2 communicate where as M1 and M4 do not, as there is a valley 

between them. Accordingly, the niche expansion algorithm merges M1 and M2 in subsequent 

iterations while M4 stays as an independent niche.  
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Figure 3.7. Niche distribution for a multimodal fitness landscape. 

A sequence of points on the line joining the two niches are generated (see Figure 3.7, x1 

to x6, for instance) to determine whether the two niches communicate or not. Then, the fitness of 

those points is compared with the fitness of the niche masters. As can be seen from Figure 3.7 

above, there exists a point (x4) satisfying the inequality in equation (3.27). This indicates that 

there is a valley in between the two niches, M1 and M4 in this case.  

Figure 3.8 shows the impact of noise on the performance of the niche expansion 

algorithm. M2 has a lower fitness as compared to M1 and M3 indicating that there is a valley 

between M1 and M3. This however can be due to the impact of noise and M1 and M3 should not 

be considered as two independent actual niches. To overcome the effect of noise, a noise 

tolerance factor is introduced to modify the inequality given in equation (3.27) as shown in 

equation (3.28). 

f(xm)   min(fi f ) (3.28) 

Where   is a random number between 0.8 and 1.  
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Figure 3.8. Effect of noise on niche migration. 

3.7. Chi-square like Distribution 

To test the statistical soundness of the algorithm, a chi-square like deviation is computed 

for two of the benchmark functions (Fa (x) & Fc(x)). The chi-square like deviation for the q niche 

peaks plus the nonpeak niche is given by equation (3.29).  
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The chi-square like deviation is a measure of the deviation of the actual population 

distribution from the ideal population distribution at each of the peaks. The smaller the chi-

square value, the lesser is the deviation from the ideal distribution and hence the better is the 

algorithm. As can be seen from Figure 3.9, FPN and TFS have nearly the same distribution for a 

M1 

M2 M3 

M4 
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multi-modal function of equal peaks (Fa(x)). This is expected because, for a multi-modal fitness 

landscape with equal peaks, TFS also tends to distribute the population evenly across the various 

peaks at steady state.  

 

Figure 3.9. Chi-square like deviation for Fa(x). 

However, as the gap in fitness values of the peaks increases, FPN starts to outperform 

TFS. This is clearly evident from Figure 3.10, where there is a big difference in the chi-square 

like values. The FPN algorithm is able to distribute the population along the various peaks with a 

small deviation from the ideal mathematical distribution irrespective of the gap in fitness values 

at the peaks. The results are of course in harmony with the distribution obtained from simulation 

results in Chapter 6 (see Table 6.1 and Table 6.2).  

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
h

i-
S

q
u

ar
e 

L
ik

e 
D

is
tr

ib
u

ti
o

n

Generations

 

 

TFS,N=30

TFS,N=50

TFS,N=100

FPN,N=30

FPN,N=50

FPN,N=100



51 

 

 

Figure 3.10. Chi-square like deviation for Fc(x). 
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CHAPTER 4  

Evolving Hierarchical Cooperation in Classifiers 

Classification is a supervised learning where the learning system, once sufficiently 

trained, seeks to categorize previously unseen instances in to correct classes or labels. A 

Learning Classifier System (LCS) accomplishes this task by evolving a population of classifiers 

using a reinforcement signal. It is a machine learning system based on reinforcement learning 

and Genetic Algorithms (GAs). Like an expert system, it utilizes a knowledge base of 

syntactically simple production rules that can be manipulated by GA (J. Holland, 1975, 1992). 

The use of a rule-based system allows an LCS to conveniently represent and refine complex 

control strategies (Wilson and Goldberg, 1989). Classifiers are rewarded every time an input is 

correctly classified. All classes (labels) are considered equally important (i.e., a classifier which 

correctly classifies an input from one class and another which correctly classifies a different 

input from another class are equally rewarded by the trainer). This essentially turns the 

classification problem into an optimization of a multimodal function with equal peaks. To 

achieve this task, an LCS has to build a set of rules that work in coordination to accurately model 

a given environment. This requires a mechanism to evolve and sustain a diverse, cooperative 

population of rules that together represent a concept or model a set of behaviors that solve a 

given problem. Building a hierarchical set of rules, where accurate and more specific rules 

respond to a subset of the situations covered by more general but less accurate rules is vital for a 

concise concept description, especially when dealing with an environment that has huge numbers 

of states. The LCS in its very nature has a unique power of discovering cooperating rules through 

the robust search ability of the GA by the guidance of reinforcement learning. However, the LCS 

would tend to lose diversity due to a strong selection pressure of the GA. Hence, to maintain a 
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cooperative diversity while applying a selection operator to the population of rules, it must 

incorporate some form of niching mechanism (Horn, 1993; Horn and Goldberg, 1996). Niching 

provides the LCS with the required restorative force to maintain diversity in the face of selection 

pressure. This chapter explores the impact of niching in LCS from the perspective of attaining a 

diverse set of cooperative hierarchical rules. The FPN niching technique introduced in chapter 3 

of this dissertation is used as a resource sharing mechanism to reinforce classifiers that match to 

a given input.  

In this work, we considered a stimulus-response (Nasraoui and Krishnapuram) based 

LCS system where an immediate reward or punishment is provided at each computational time 

step by the external environment. For such a system, there is no need of a complex credit 

assignment algorithm like the bucket brigade and hence the message list in Holland’s 

formulation of LCS is omitted in our formulation. Though this work exclusively focuses on 

investigating the significance of implicit niching for evolving a multi-level hierarchical 

cooperation in a population of diverse rules for Boolean function learning, the algorithm 

developed here can be extended to any evolutionary algorithm that seeks to evolve a hierarchical 

set of cooperating rules for a concise concept description. A mathematical formulation for 

predicting the steady state strengths of subpopulations is also provided. Most of the content in 

this section is published in our recent work on the formation of default hierarchy in Boolean 

function learning using LCS (Workineh and Homaifar, 2012b).  

4.1 Hierarchy in LCS   

In a Michigan style LCS, an individual classifier in the population represents part of a 

solution to a given problem. There is no single rule that adequately models the environment 

instead the solution domain comprises of a set of rules that collectively give a better model of the 
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environment. Hence, a complete solution to the problem involves coordination among sets of 

rules in the population. And the search for cooperative rule sets takes place within a single 

population of competing and cooperating rules. Consider a scenario where the learning system 

needs to model an environment with huge number of states. An LCS that is to operate in such an 

environment can be modelled in either of two ways. The first is to build a model of the 

environment using a set of rules that never make mistakes. This homomorphic approach, 

however, is not practically feasible as it requires a vast number of rules to model realistic 

environments (Riolo, 1987). Besides, an environment exhibiting perpetual novelty combined 

with a limited sampling of it adds another order of complexity to this homomorphic approach 

(Booker, 1982, 1989). The other alternative is to build a hierarchical model where the task of the 

learning system is to categorize the states in to groups that can be treated in a similar way (Riolo, 

1987; R. Smith and Goldberg, 1992). A hierarchical rule set provides a multi-level structure in 

which rules at the bottom of the hierarchy are very general and those at the top are very specific 

(refer to Figure 4.1).  
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Figure 4.1. A hierarchical rule structure. 



55 

 

Take for instance, the 6-bit Boolean multiplexer (6-mux) problem whose disjunctive 

normal form is as follows:  

   ̅ . ̅ .     . ̅ .    ̅ .  .     .  .   (4.1) 

Where a1… 4 are the data lines, s1 and s2 are the select inputs and Y is the output. The system’s 

decision is correct when its output value is the same as the value of Y in equation (4.1) for a 

given input. Figure 4.2 shows both non-hierarchical and a hierarchical solution set for the 6-mux 

problem.  
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Figure 4.2. Hierarchical and non-hierarchical solution set for 6-multiplexer problem. 

The 8 rules in the non-hierarchical set in Figure 4-2 are the perfect solutions to the 6-mux 

problem. With default hierarchy, the same problem can be solved with a more compact 

hierarchical rule set. The last rule (with all hashes in its condition) in the hierarchical set is a 

default rule and the other four rules are exception rules. The default rule matches to all inputs 

covered by the exception rules but it makes a correct decision only half of the time. The default, 

while correct most of the time, is less accurate and makes mistakes for some cases it matches. 

Similarly, a hierarchical solution for the more complex problem (11-multiplexer) is shown in 

Figure 4.3.  
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Figure 4.3. Hierarchical and non-hierarchical solution set for 11-mux problem. 

Generality and specificity of a classifier in an LCS is dependent on the number of hashes 

(i.e ‘#’ symbols) in its condition. The more hashes a classifier has, the more general it is and 

covers more of the environmental niches. On the other hand, a specific classifier has fewer 

numbers of hashes in its condition. An exception rule is a specific rule with an action different 

from that of the default. Hierarchy can occur at any level within the rule sets. The term default 

hierarchy here refers to a hierarchical set of rules that contain a default rule for the default class 

along with other exception rules. 

A working default hierarchy provides a great parsimony of the required rules to model 

the environment. In addition  the system’s performance can be improved by adding more 

exception rules to the hierarchy. The essence behind achieving a working default hierarchy is 

therefore to build a more compact rule set with a reasonably fair accuracy as compared to the 

homomorphic model which aims to discover a set of rules that never make mistakes. This 

requires the coexistence of exception and default rules in the system. 
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In this regard, there are two major challenges to the formation of a viable default 

hierarchy in LCS. The first challenge is how to evolve the population to a hierarchical set. The 

learning process has to drive the system from an initial state of random population of rules to a 

state that embraces a hierarchical set of rules which models the environment at a desired 

accuracy. Evolving to a hierarchical set is one part of the challenge. Once the hierarchy is 

attained, it is also equally important to sustain it for generations in the face of deletion by the 

discovery component.  

At times when a default and an exception rules match to an input, there should be a 

mechanism that favours the exception to fire. In other words, for a hierarchy to work properly, 

the exception rule has to cover the default at times when the default is wrong. These 

requirements urge the use of not only a proper niching scheme to maintain diversity but also a 

special bidding strategy to favor the exception rule over the default when both match to an input. 

4.2 System Formulation   

4.2.1 Classifier format. The classifier format in our implementation has 5 parameters: 

condition, action, strength, experience (Exp) and creation time (Ctime) (see Figure 4.4). The 

condition is a string from the ternary alphabet (0, 1 or #) and the action is binary (0 or 1). The 

hash symbol (#  in the condition is “don’t care” and matches to any input. The experience and 

creation time parameters are added for better understanding of the learning process. Experience 

(Exp) indicates the participation of a classifier in decision making process (i.e. match set) and the 

creation time refers to the iteration time at which the classifier is created. It helps to investigate 

whether a hierarchy once evolved can be survived for generations. 

Condition Action Strength Exp Ctime

 

Figure 4.4. Classifier format. 
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The following notations are used in this dissertation: [P] refers to classifiers in the 

population, which is the bigger set, [M] refers to the match set and [AL] represents classifiers in 

the advocate list, which is a subset of [M]. 

4.2.2 Learning system. Learning in an LCS is an ongoing adaption to a partially known 

environment and not an optimization problem as in most reinforcement learning systems. The 

learning system includes the following major components: the auction, clearing house (CH), 

fitness proportionate resource sharing (FPRS) and the GA. 

4.2.2.1 Auction. This is the part where classifiers in the match set participate in auctions 

by bidding a fixed proportion of their strength. The bid amount depends on the value of its 

current strength and the specificity. The deterministic potential bid (PB) of a classifier i during 

auction is given in equation (4.2). 

P i CbidSi (  
NH

CL
 

⏟    
 (4.2) 

Where NH is the number of hashes in the condition string, Cbid is the bid constant (see 

Table 4.1), Si is the current strength and CL is the condition length. The specificity parameter is 

the ratio of the number of non-hash symbols to the condition length. The deterministic bid is not 

used directly to determine the auction winner. Instead, it is slightly perturbed by adding a 

random noise to promote exploration of the classifier space.  

The effective bid (EB) is computed by adding a random noise to the bids submitted by each 

competing classifier using equation (4.3). 

E i P i (  rand( E I   ⏟           (4.3) 

Where, EBID is the effective bid factor used during simulation to limit the random perturbation 

on the deterministic bid within a small range (10% for instance).  
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4.2.2.2 Fitness Proportionate Resource Sharing (FPRS). The learning system 

continuously interacts with its environment through its detectors and effectors. It uses a feedback 

about the impact of its action on the environment to learn from experience. The learning agent is 

blind without a proper guidance by a reward signal. A trainer is therefore necessary to determine 

whether the environmental modification was beneficial or detrimental. The reinforcement 

program (RP) determines the rule's fitness by generating a signal in the form of a reward or 

punishment. It determines the rule fitness and enables the system to learn from its environment 

based on a reward signal that implies the quality of its action. If the whole learning system is a 

water fall, the RP is the pipe that guides it to a point of interest. This work introduces a novel 

niching scheme termed fitness proportionate resource sharing, given in equation (4.4), for the 

formation of a viable default hierarchy. 

ri(t   
Si(t 

∑ Sk(t 
M(t 

k  

 (4.4) 

Where, R is the total reward provided by the environment whose value is initialized once, M(t) is 

the number of classifiers in the advocate list at iteration t, ri(t) is the fraction of the total reward 

(R) that goes to classifier i at iteration t and Si(t) is the strength of classifier i at iteration t. The 

constant reward provided by the external environment is shared proportionally among classifiers 

in the advocate list. 

4.2.2.3 Clearing House (CH). The CH is the part of the learning system that deals with 

the modifications in strength of classifiers as the classifier system learns. All classifiers pay 

existence tax and classifiers in the match set pay an additional overhead tax while classifiers in 

the advocate list has to pay also the bid amount. Assuming correct decision is taken by the 

system at iteration t, the strength of a classifier i in the advocate list at the next iteration is 

governed by equation (4.5).  
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Si(t  ) Si(t)(  Cext Coh Cbid) ri(t  (4.5) 

Where, Cext and Coh are the existence and overhead tax constants respectively, Cbid is the bid 

constant, and Si(t) and ri(t) are the strength and reward for classifier i at iteration time t. A 

different paying and bidding policy (where the specificity factor is used during the bid 

computation to decide the winner  but it is left out during the calculation of the classifier’s 

payout) is followed in this work. As can be seen from equations (4.2) and (4.5), the pay out of a 

classifier in equation (4.5) (i.e. Cbid*Si(t)) is different from the potential bid amount given in 

equation (4.2) due to the specificity term used in bid computation. 

Classifiers in [M] that are not in [AL], do not pay the bid and do not share a reward. Hence their 

strength is governed by equation (4.6).  

Si(t  ) Si(t)(  Cext Coh) (4.6) 

For classifiers in [P] that are not in [M], Coh, Cbid and ri(t) are all zero and equation (4.5) is 

simplified as shown in equation (4.7).  

Si(t  ) Si(t)(  Cext) (4.7) 

4.2.2.4 Genetic Algorithm (GA). The GA discovers new rules among a population of 

candidate rules based on the experience of existing rules. It diversifies the population using 

mutation and cross over operators. A roulette wheel selection method is used to select parents for 

reproduction. The strength of new classifiers emerging from GA is initialized to a value that is 

neither too high (so that they do not dominate experienced classifiers) nor too low (to make them 

competent with the relatively more experienced classifiers in the system during auctions). In line 

with previous research work (Homaifar et al., 1988; Workineh and Homaifar, 2011), the strength 

of the new classifiers is initialized to a third of their parents’ strength.  ther initialization 

techniques (for instance initializing it to the average of the parents’ strength  are also applied but 
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there is no significant difference in performance. Each GA operation brings two new classifiers 

that replace classifiers with lowest strength in the existing population. Figure 4.5 shows the 

interaction of the three major components of an LCS during the learning process when an 

environmental input is detected. 

 

Figure 4.5. A Block diagram of an LCS in learning mode. 

First, the performance component selects classifiers in the population whose conditions 

matched to the current input and forms the match set. Classifiers in the match participate in an 

auction to take action. Once the winner is classifier is identified, the reinforcement component 

provides a reward or punishment based on the action taken and the population is diversified by 

discovering new rules using the discovery component. 
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4.3 Learning Cycle 

The learning cycle of the system implemented in this work involves the following 

sequences of computations at each iteration time. 

1. Read an input from the environment. 

2. Form the Match set [M] using all classifiers in the population [P] that match to the 

current input. 

3. Classifiers in [M] bid in an auction by submitting a proportion of their strength using 

equation (4.3).  

4. Declare a winner classifier based on highest effective bid submitted in step 3. 

5. Form the advocate list [AL] out of classifiers in [M] proposing the same action as the 

winner classifier’s action.  

6. Execute action on the environment and possibly receive a reward (R). 

7. If a reward is generated following the action in step 6, distribute the reward 

proportionally using equation (4.4) among classifiers in [AL].  

8. Update the strength of classifiers in [P] using equations (4.5) through (4.7) accordingly. 

9. Discover two new rules by applying GA on [P] 

10. Repeat the above steps until a stopping criterion is met. 

4.4 Steady State Analysis 

LCSs are generally complex stochastic systems and a complete mathematical modeling 

of the learning dynamics is almost impossible even for the simplest scenario of a stimulus 

response LCS. To get a thorough understanding of the learning system, we presented a detailed 

simulation results that show the population dynamics, the performance accuracy and the 

variation of the strength at each epoch for learning Boolean function mapping in the multiplexer 
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problem. An epoch stands for one complete presentation of the environmental inputs to the 

system. The main purpose of our work is to introduce a novel sharing scheme that leads to the 

formation of a viable default hierarchy in LCS. To come up with an exhaustive mathematical 

formulation for predicting the emergence of subpopulations, the composition of the population at 

equilibrium and quantitative characterization of the maintenance of niches under the selection 

pressure of GA is not the primary intent of this work. The authors in (R. Smith et al., 1993) 

showed the impact of GA selection on the population composition under a fitness sharing 

scheme. Horn and Goldberg (Horn and Goldberg, 1996) also made an analysis of the niche 

dynamics for a much simpler LCS system (assuming the existence of only two niches and every 

classifier has equal specificity). In our case, classifiers can have different specificity and no 

assumption is made on the number of niches and the reward share of classifies is dependent on 

the current size of the advocate list, which we do not have any a priori knowledge. Under these 

circumstances, analysis of the niche dynamics for such a complex scenario is a daunting task. 

But to have a further insight on the variation of the strength of classifiers under the 

selection pressure of GA, we made some simplifying assumptions and deduce mathematical 

expressions that can predict the steady state behavior of the total strength of subpopulations. It is 

interesting to express the impact of the various forms of taxes, the bid and the shared reward 

quantitatively on the steady state strength of classifiers in the population. We made an 

assumption that a default hierarchy will emerge at some epoch in the learning process and take 

control of the system. In other words, our steady state analysis gives the variation of the total 

strength of subpopulations (default and exception classifiers) disregarding the impact of other 

classifiers that are not part of the hierarchical set. The validity of this assumption is in fact 

experimentally proved by the series of simulation results conducted.  
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Also, as it is difficult to trace a specific classifier in the population and for the sake of 

simplicity, we treated classifiers in group and the total strength of the group is considered during 

the analysis. For instance, instead of dealing with each exception classifier separately, the whole 

set is treated as one group and the default set as another group. Two things are valid under this 

assumption. First, every group (the default set and the exception group) receives a reward at 

every other iteration. Second, considering classifiers in group avoids the dependency of strength 

modification on the size of the current advocate list (since the fraction term in the reward 

allocation adds up to unity for the group).  

The default classifier matches to every input and is always subject to (Cext and Coh). It is 

correct only half of the time and hence would possibly receive a reward every other iteration. 

The other half of the inputs is covered by the exception classifiers. In effect, the exception group 

would receive a reward every other iteration for the cases where the default classifier is wrong.  

Now, let t be an iteration time where there is no reward for the default classifier. This 

means at t+1, the default expects a reward and so on. The same is true for the exception group. 

Let K be the sum of all taxes and the bid amount, K1 be the sum of the existence and overhead 

tax and K2 be the existence tax, Mt the size of the advocate list at iteration t, SDG(t) represents the 

total strength of all instances of the default classifier at iteration t, SEG(t) represent the total 

strength of all classifiers in the exception group at iteration t. 

4.4.1 Default classifier. The strength of the i
th

 default classifier (SDi) at iteration t+1 can 

be expressed in terms of its strength one iteration before using equation (4.8).  

S  (t  ) S (t)(   )  
S  (t)

∑ S (t)
Mt

   

 (4.8) 

Considering all instances of the default classifier in group, we know that the total reward 

R is distributed among different instances of the default and hence the fraction term adds up to 
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unity. Hence, the total strength for the default group at iteration t+1 can be expressed in terms of 

the total strength one iteration earlier using equation (4.9). Similarly, the strengths at the t+2 and 

t+3 iterations are given by equations (4.10) and (4.11) respectively. 

S  (t  ) S  (t)(   )   (4.9) 

S  (t  ) S  (t  )(    )  

 S  (t)(   )(    )  (      
(4.10) 

A reward comes at the (t+3)
th

 iteration and the total strength at the (t+3)
th

 iteration is given by 

equation (4.12)  

S  (t  ) S  (t  )(   )   (4.11) 

Back substituting the value of S  (t+2) from equation (4.10) in to equation (4.11) 

S  (t  ) S  (t  )(    )(   )   (4.12) 

At steady state, we expect the following equations to hold. 

S  (t) S  (t  )  S  ss 
 

S  (t  ) S  (t  )  S  ss 
 

(4.13) 

Solving these equations one at a time, we get equations (4.14) and (4.15). 

S  (t) S  (t)(   )(    )  (    ) 

 S  ss 
(  (   )(    ))  (    )   

S  ss 
   

    

        
 

(4.14) 

And the second steady state strength for the default group is given by equation (4.15). 

S  (t  ) S  (t  )(    )(   )   

S  ss 
 

 

        
 

(4.15) 
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As the reward comes to the set at every other iteration, the steady state total strength of 

the default group oscillates between these two values. For a very small K1, the two values are 

close to each other.  

4.4.2 Exception classifiers. Following the same approach and considering the exception 

classifiers as one group, we can also derive the steady state equations for the total strength of 

exception classifiers.  

SEi(t  ) 
 
n  

 
n SEi(t)( -  ) 

 

 
n S  (t)( - )  

S  (t 

∑ S (t 
Mt
   

  (4.16) 

Where SEi(t) is the strength of an exception classifier i at the t
th

 iteration, n is the number of 

select bits in the input (i.e. 2 for 6 mux, 3 for 11 mux etc). Again, considering all exception 

classifiers in group, the fraction term in the equation adds up to unity and we get simplified 

expression for the total group strength given in equation (4.17).  

There are a total of 2
n
 classifiers in the exception group and only one receives a reward at 

a time. Hence the total strength for the group at the (t+1)
th

 iteration is given by equation (4.17). 

SE (t  ) 
 
n  

 
n SE (t)( -  ) 

 

  
n SE (t)( - )     (4.17) 

The first term on the right in equation (4.17) accounts for exception classifiers in the 

group that do not match to the given input, and the second term accounts for instances of the 

exception classifier that matches to the current input. Of a total of 2
n
 exception classifiers in the 

group, instances of only one exception classifiers matches to a given input and will be part of the 

advocate list and incur all forms of tax and bid. 

There is no reward at (t+2) and hence the total strength is given by equation (4.18).  

SE (t  ) SE (t  )(    ) (4.18) 

And the total strength at (t+3) is governed by equation (4.19). 
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SE (t  ) 
 
n   

 
n SE (t  )(    ) 

 

 
n SE (t  )(   )   (4.19) 

After substitution and rearranging terms in equation (4.19), the group strength for the exception 

classifiers at the (t+3)
th

 iteration is given by equation (4.20).  

SE (t  ) SE (t  ) (
 
n   

 
n (    )

  
 

 
n (   )(    ))   (4.20) 

Again at steady state,  

SE (t) SE (t  )  SE ss  

SE (t  ) SE (t  )  SE ss  

(4.21) 

Solving the first equality in equation (4.21) for steady state value, we get 

SE (t) (
 
n   

 
n SE (t)(    ) 

 

 
n SE (t)(   )  ) (    ) (4.22) 

After substitution and rearranging terms in equation (4.22), we get 

        
    

  
    
  

(    )  
 
  
(   )(    )

 (4.23) 

And from the second equality in equation (4.21), we get equation (4.24). 

SE (t  ) SE (t  ) (
 
n   

 
n (    )

  
 

 
n (   )(    ))   (4.24) 

After solving and rearranging terms in equation (4.24), the second steady state value is given by 

equation (4.25). 

SE ss  
 

  
 
n
  

 
n (    )  

 

 
n (   )(    )

 
(4.25) 

The steady state value of the total strength of exception classifiers oscillates between the 

two values given in equations (4.23) & (4.25). Usually, the existence tax is very small 

(i.e.  -    ) and hence the two values are very close to each other. The optimum values of the 
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simulation parameters are given in Table 4.1. The mutation and crossover probabilities are varied 

during the experiments and the best results are obtained for all multiplexer problems using the 

values given in the Table 4.1. 

Table 4.1 

Simulation parameters with their optimum values 

Parameter Value Meaning 

6-mux 11-mux 20-mux 

Pop size 200 400 800 Number of classifiers 

Cext 0.001 0.001 0.001 Existence tax 

Coh 0.005 0.005 0.005 Overhead tax 

Cbid 0.1 0.1 0.1 Bid coefficient 

Px 0.65 0.65 0.65 Probability of crossover 

Pm 0.008 0.008 0.008 Probability of mutation 

EBID 0.1 0.1 0.1 Ebid constant 
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CHAPTER 5  

FPN for Dynamic Clustering 

In this era of huge amount of data, clustering has a pivotal role in data mining with 

innumerable applications in a wide range of fields. The goal of clustering is to partition data in to 

categories or clusters so that objects in the same cluster are similar in a certain type of measure 

and different from those of other clusters (Nasraoui and Krishnapuram, 2000; Streichert et al., 

2004; Zhang et al., 2006). Generally, there are two broad categories of clustering techniques: 

hierarchical and partitional. Hierarchical clustering techniques can be further divided in to 

agglomerative (begins with each entry as a cluster center and proceeds successively merging 

smaller clusters in to larger one) and divisive analysis (starts with one big cluster and proceeds 

by splitting the larger cluster). On the contrary, the partitional clustering techniques directly 

decompose the data set in to several disjoint clusters based on a defined criterion. K-mean 

clustering is one of the most known partitional clustering techniques (Sheng et al., 2004). This 

chapter explores the application of the proposed niching technique for clustering using both 

synthetic and real data.  

The intent here, however, is not to compare its performance with or claim an 

improvement over a specific clustering algorithm. We want to demonstrate how FPN can be 

applied for clustering of multi-dimensional data. Most clustering algorithms rely on a priori 

knowledge (e.g. number of clusters, the distribution of the data etc) on the data. For instance, the 

K-mean algorithm assumes a predetermined number of clusters and its performance is dependent 

on the cluster initialization and as a result it may get trapped in local optima (Sheng et al., 2004). 

The simulation results show that the developed niching technique can be applied for dynamic 

clustering when such a priori information is not available ahead. FPN utilizes the robust global 
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search ability of GA to dynamically locate cluster centers without making any a priori 

assumption about the distribution of the data.  

5.1 Mapping Multi-modal Optimization to Cluster Discovery  

As emphasized in earlier chapters, the use of niching enables GAs to evolve a diverse set 

of populations and hence making them suitable to discover multiple optima in the fitness 

landscape. With proper formulation of the objective function, a clustering problem can be 

mapped in to the optimization of a multi-modal function with unequal peaks. The location of the 

unequal peaks corresponds to the cluster centers in the feature space. The highest peak values of 

the fitness landscape represent dense cluster areas while the lower peaks map to sparse cluster 

centers. The number of peaks of the multi-modal function corresponds to the number of cluster 

centers. The task of the GA is then to search for the location of optimum points which represent 

cluster centers. The solution space for possible cluster centers consists of n-dimensional 

prototype vectors. For clarity and computational speed, a real valued GA implementation is 

preferred over binary GA (Giráldez et al., 2003). Hence, an individual in the population is a 

sequence of n real valued numbers representing a candidate cluster center. 

Figure 5.1 shows how a multimodal function of one variable can be mapped in to a 

clustering problem in 1-dimensional feature space. The locations of the optimum points in the 

multimodal fitness landscape (C1 to C5 in the figure) represent the values of the cluster centers. 

The variation in fitness values of the five peaks accounts for the distribution of the data (i.e. 

highest peaks represent dense areas in the data and lower peaks correspond to clusters of sparse 

data). Similarly, a higher dimension multimodal function can be mapped in to clusters of a 

higher dimensional feature space data. For instance, optimization of a two dimensional multi-

modal function can be mapped in to finding cluster centers in a 2-D feature space. 
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Figure 5.1. Mapping of a multimodal optimization problem to a clustering problem in 1-D. 

Figure 5.2 shows a scenario where a two dimensional multimodal objective function 

defined over the data points can be map to clustering of data in 2-D feature space. For a one to 

one correspondence between the locations of the optimum points and cluster centers, the 

objective function needs to have local optima at or near the cluster centers. A density based 

objective function satisfies this criterion (Chang et al., 2010; Duan et al., 2007).  

 

Figure 5.2. Mapping a 2-D multimodal function in to a clustering problem in 2-D. 

C5 C4 C3 C2 C1 

Peaks at cluster centers  
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5.2 Formulation of Fitness Function 

It is generally assumed that dense areas of a feature space are identified as clusters. 

Defining a fitness function that takes this in to account is very crucial to the success of GA for 

discovering actual cluster centers in the data. Density based fitness functions are commonly used 

in literatures (Duan et al., 2007; Sander et al., 1998; Sheng et al., 2004; Zhang et al., 2006). In 

this work, a density based fitness function similar to the one given in (Chang et al., 2010) is 

applied. Unlike the fitness function defined in (Duan et al., 2007; Sander et al., 1998), the 

formulation of the fitness function used in our implementation does not require a fixed value of 

the neighborhood radius and the size of a cluster.  

Let X={x1, x2    xN} represent a D-dimensional data and K be the size of the population 

which represents the initial number of clusters that prevail in the data. The goal is to find all 

cluster centers (Ci) that maximize the total similarity given by equation (5.1).  

 (C) ∑∑ (   ( 
‖    i‖

 

 
)) 

N

   

 

i  

 (5.1) 

Where    is a constant that determines the shape of the density function, C= (C1, C2, … CK ) 

represent the cluster centers, N is the number of instances and µ and   are the mean and variance 

of the data and are given by equation (5.2). The value of   varies with the data and its optimum 

value is determined using correlation comparison algorithm given in (Yang and Wu, 2004). The 

mean and the variance for the data are constant and hence computed only once before the start of 

the evolution.  
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Each individual in the population represents a candidate cluster center. The population is 

initialized to cluster candidates randomly selected from the data. The fitness of an individual 

(candidate cluster center) is computed using equation (5.3).  

f(c) ∑ (e
 
‖x  c‖

 

  

 
N

   

 (5.3) 

An individual in a dense area (surrounded by many data points in the search space) will 

have a higher fitness value. Initially, the number of clusters is equal to the population size. 

Hence, the goal of the niching technique is to evolve the population in to stable subpopulations 

that converge at the location of the cluster centers. In other words, if K actual cluster centers 

prevail in the dataset, we expect the emergence of K stable subpopulations at the end of 

evolution. The niche masters (the individual with the highest fitness in the group) of each 

subpopulation represents the final cluster centers.  

5.2.1 Crossover operator. The crossover operator enables the GA to exploit already 

discovered candidate solutions (i.e. refining solutions). High crossover rate can lead to premature 

convergence, for instance getting trapped in a local optimum. If two parents (c1 and c2) are 

selected using a roulette wheel selection mechanism, then the two offsprings (c’1 and c’2) 

generated by the crossover operator are determined using equation (5.4).  

        (     )  

        (     )  
(5.4) 

Where, r is a uniformly distributed random number over [0, 1].  

5.2.2 Mutation operator. The mutation operator facilitates exploration. It helps the GA 

to get out of a local optimum and discover new regions in the search space. High mutation rate is 

undesired as it turns the GA in to a random search. Hence the mutation rate is usually set to a 
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very small value. A uniform neighborhood mutation is applied at each chromosome with a 

probability of pm to generate the mutated value of a candidate cluster at the corresponding 

location. Let d
q

min and d
q
max represent the minimum and maximum value of the data along the q

th
 

dimension respectively. Then the mutated value (d
q

m at the q
th

 dimension of a cluster center with 

value d
q
 is given by equation (5.5).  

  
        (    

      
 ) (5.5) 

Where, rm and R are uniformly distributed random numbers over the interval (0, 1) and [-1, 1] 

respectively.  

The simulation is repeated R times using different seeds for the random number generator 

and the mean and standard error are computed using equations (5.6) and (5.7). 
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Where, v(t) and E(t) are the mean and standard error at generation t, Wr,t is the number of niches 

discovered at the r
th

 experiment and t
th

 generation, G is the number of generations, R is the 

number of times the simulation is repeated.  

5.3. Algorithmic Description 

The FPN based clustering algorithm has the following computational steps. To 

counterbalance the effect of randomness in GA, the experiment is repeated 30 times using 

different seeds for the random number generator. The averages of these 30 runs are taken as the 

final cluster centers of the data. 

1. Initialize the population using N randomly selected instances from the data set.  

2. Evaluate the raw fitness of each individual in the population using equation (5.3). 
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3. Apply the dynamic niche identification algorithm (given in chapter 3) to identify the 

number of niches that prevails in the population.  

4. Compute the shared fitness of individuals belonging to the same niche using FPN. 

5. Apply real valued GA crossover and mutation given in equations (5.4) and (5.5). 

6. Go to step 2 if the stopping criteria is not reached, otherwise proceed to step 7. 

7. Select the niche masters of the population as a final cluster center and exit. 

Figure 5.3 shows the distribution of the data and the population before the start and at the 

end of evolution. The figure shows a scenario where the size of the data is 40, population size is 

20 and four clusters exist. The initial population is randomly selected from the data and the niche 

masters of the final population are picked as cluster centers. This particular setup demonstrates 

how the FPN based clustering algorithm evolves the population from a random initial state to a 

final state that is uniformly distributed among the cluster centers (i.e. the population divides 

evenly in to all clusters as expected ideally). 

 

Figure 5.3. The distribution of the population at the start and end of evolution. 

Data Initial Population Final Population 

  Niche Master     

    Individuals 
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5.4. Simulation Results 

To test the performance of the algorithm, we used both synthetic and actual data for 

clustering. The real data is obtained from the machine learning laboratory of the University of 

California at Irvine (www.ics.uci.edu/~mlearn/). Three real clustering data sets (iris, seed and 

skin) and two synthetic (one with well distributed and another with a sparse data) are used for 

testing the performance of FPN. The Fisher iris data set has a total of 150 instances of three 

different types of flowers (class setosa, class versicolor and class virginica). There are 50 

instances per class and each instance has four attributes: sepal length, sepal width, petal length 

and petal width. The seed data set has 210 instances with 7 attributes: area, perimeter, 

compactness, length of kernel, width of kernel, asymmetry coefficient and length of kernel 

groove. The data set consists of kernels belonging to three different varieties of wheat: Kama, 

Rosa and Canadian, each containing 70 instances. The third data set used is the skin 

segmentation data set. This data set is collected by randomly sampling the R, G, B values from 

face images of various age, race and gender groups. The total sample size is 245,057 and it has 

two classes: skin and non-skin samples.  

Figure 5.4 shows a data set that consists of 16 clusters. As can be seen from the same 

figure, the FPN based clustering algorithm discovered all the 16 clusters. In Figure 5.4 and 

Figure 5.5, the red squares represent the scatter plot of the data, the black circles represent the 

evolved GA population and the blue shaded circles refer to the niche masters in the final 

population. The number of niches is equal to the number of clusters that prevail in the data and 

their value represents the niche masters (cluster centers). This data set has well separated clusters 

and is relatively easy to identify the cluster centers. For faster convergence at the cluster 

locations, the population is initialized from the data.  

http://www.ics.uci.edu/~mlearn/
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Figure 5.4. Synthetic data with well separated clusters. 

Figure 5.5 shows a data set with a variable density of distribution (some regions are 

highly dense and others are sparse). Since the fitness function is defined based on density, 

individuals close to highly dense areas will have high fitness, while those close to less dense 

areas will have lower fitness. From the FPN perspective, this is equivalent to optimizing a 

multimodal function with variable peaks. As can be seen from the final population distribution in 

Figure 5.5, FPN discovers all the nine clusters in the data despite a significant difference in the 

density of the clusters. This is due to the fact that FPN is density unbiased as it considers both 

high and low peaks of the multimodal function equally important. A GA search based on 

traditional fitness sharing favors dense areas and as a result there is a high chance of missing 

clusters with sparse data. This also makes the FPN based clustering less sensitive to outlines in 

the data.  
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Figure 5.5. A synthetic data with less dense clusters. 

The remaining data sets (iris, skin and seed) are higher dimensional and cannot be 

visualized in 3-D. Instead, a simulation result for the average number of niches and the standard 

error is depicted in Figure 5.6 and Figure 5.7 respectively. The number of niches corresponds to 

the number of cluster centers in the data. As can be seen, FPN discovers 2 clusters for the iris 

and skin data set and 3 clusters for the seed data set. The experiment is run 30 times and the 

number of niches discovered at each generation is averaged over the size of the experiment. The 

standard error measures the deviation of the number of niches (cluster centers) from the average 

number of niches as generation goes on. A constant value indicates that there is no variation in 

the number of niches discovered at each generation.  

There is a high variation on the number of clusters discovered for the iris data set (see 

Figure 5.7) as compared to the other data sets. This is so, because the iris data contains only two 
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constant, in accordance with the average number of clusters discovered by the FPN algorithm for 

those data sets as shown in Figure 5.6.  

 

Figure 5.6. The average number of clusters discovered using FPN for the five data sets. 

 

Figure 5.7. The standard error plot for two synthetic and three real datasets. 
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CHAPTER 6  

Results and Discussion 

This chapter has two major sections. The first section discusses the simulation results for 

FPN technique introduced in chapter 3 of this dissertation. A comparison with other niching 

schemes is made using benchmark multimodal functions from literatures. The second section 

extends the application of the niching technique developed for evolving hierarchical cooperation 

in classifiers. A comparison on whether other existing sharing techniques can lead to the 

formation of default hierarchy in LCS and whether they can sustain it after it has emerged, is also 

made in this section.  

6.1. Results for FPN  

The FPN scheme is applied for the optimization of multimodal functions both with equal 

and unequal peaks and its performance is compared with the traditional fitness sharing scheme. 

Simulation is carried out with various population sizes to investigate how the niching techniques 

behave as the population size varies. The simulations are run 20 times and the average values are 

plotted. As the goal of a niching technique is to discover multiple peaks in parallel, one possible 

way of measuring system performance is displaying the number of peaks discovered as the 

search process goes on. In Figure 6.1, a performance comparison for a multimodal function 

having five equal peaks (Fa(x)) is shown. As can be seen from this figure, there is no significant 

difference in performance between the two algorithms for this function. For instance, for a 

population size of 50, both algorithms discovered almost all the five peaks (see Figure 6.1). This 

result is expected as FPN essentially degenerates in to traditional fitness sharing for multimodal 

functions having equal peaks. However, for multimodal functions having unequal peaks, there is 

a significant difference in performance (see Figure 6.2 and Figure 6.3). The first is for a function 
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with a small fitness ratio among the different peaks (Fb(x) function). For this scenario, FPN has a 

reasonably fair performance even at a small population size. For a population size of 30, the 

traditional niching scheme discovered nearly 75% of the peaks whereas FPN discovered about 

95% of the peaks on average. As the population size increases, there is an improvement in 

performance of both techniques. For a population size of 50, both algorithms discovered almost 

all of the peaks. In the simulation results (both tables and figures), TFS refers to the traditional 

fitness sharing scheme, FPN stands for the fitness proportionate niching and PS is the population 

size. 

 

Figure 6.1. Number of peaks discovered for Fa(x) out of a total of 5 peaks. 

Figure 6.3 displays the simulation result for Fc(x) for various population sizes. As can be 

seen from the first subplot in Figure 6.3, the traditional fitness sharing technique discovers only 

the highest peak (only 1 peak out of a total of 5 peaks) while FPN discovered almost all of them. 
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Figure 6.2. Number of peaks discovered for Fb(x) out of a total of 5 peaks. 

 

Figure 6.3. Number of peaks discovered for Fc(x), out of a total of 5 peaks. 
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The results for Fc(x) show how the traditional niching technique is sensitive to the 

difference in fitness of the peaks. To discover all the peak locations, it requires a very large 

population size which depends on the fitness ratio at the highest and lowest peaks. The 

performance dependency of TFS on the population size was discussed in chapter 3. In this 

particular simulation, the traditional niching technique requires a population size of 150 to 

discover all the peaks as compared to 50 or lower population size for the FPN scheme.  

Figure 6.4 and Figure 6.5 demonstrated the performance of FPN and TFS for the more 

complex multimodal functions (Fd(x) and Fe(x)). Fd(x) has ten unevenly distributed equal peaks 

whereas, the shekel foxhole function (Fe(x)) has 25 uniformly distributed equal peaks. As can be 

seen in the results, FPN outperformed TFS in discovering the peaks.  

 

Figure 6.4. Number of peaks discovered for Fd(x), out of a total of 10 peaks. 

0 50 100 150 200
6.8

7

7.2

7.4

7.6

7.8

8

8.2

8.4

N
um

be
r o

f P
ea

ks

Pop Size=50

 

 

TFS

FPN

0 50 100 150 200
8

8.2

8.4

8.6

8.8

9

9.2
Pop Size=80

 

 

TFS

FPN

0 50 100 150 200
8.5

8.6

8.7

8.8

8.9

9

9.1

N
um

be
r o

f P
ea

ks

Generations

Pop Size= 100

 

 

TFS

FPN

0 50 100 150 200
8.9

9

9.1

9.2

9.3

9.4

9.5

Pop Size= 120

Generations

 

 

TFS

FPN



84 

 

 

Figure 6.5. Number of peaks discovered for Fe(x), out of a total of 25 peaks. 
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As can be seen from both tables, FPN tends to distribute the population among the 

various peaks uniformly irrespective of the fitness difference among the peaks. In Table 6.2, for 

instance, TFS discovers only one of the five peaks using a population size of 30. But FPN 

discovered all the five peaks using the same population size.  

Table 6.2 

Population distribution at the five different peaks for Fc(x) 

PS Peak1 Peak2 Peak3 Peak4 Peak5 

30 TFS 29.8 0.2 0 0 0 

FPN 7.9 6.9 6.3 5.5 3 

50 TFS 47.1 2 0.7 0.1 0 

FPN 12.1 10.7 9.7 9.3 7.5 

100 TFS 88 5.7 4.5 1.4 0.2 

FPN 21.6 20.6 20 19.9 17.1 

150 TFS 128.4 9.8 7 3.5 1.3 

FPN 31.9 31.5 30.5 28.9 26.9 

 

6.2. Results for LCS  

For the sake of comparing results with previous research work, the proposed algorithm 

was applied to the multiplexer problem (Wilson’s  oole function . Simulations were done on the 

6-multiplexer problem and to show the scalability and consistency of the algorithm, the 

experiment is extended to higher multiplexer problems (11 & 20 multiplexers). For all 

simulations, classifiers were initialized to an initial strength of 100. The payoff for a correct 

decision (R) by the system was set to 1000 while absence of a reward was considered as 
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punishment for a wrong response. The specificity value for the default classifier was set to 0.1 in 

the case of 6-mux, 0.08 for 11-mux and 0.01 for the 20-mux. The values for the initial strength, 

reward and specificity are initialized in accordance with previous research work. The values for 

the other parameters are given in Table 4.1.  

6.2.1 Performance evaluation. The performance of the learning system is measured by 

the accuracy of its response to a given input. Figure 6.6 shows the percentage of correctly 

identified environmental inputs by the system and the solution count as a function of the number 

of epochs. The upper curve represents the percentage of correct decision by the system and the 

lower curve is the percentage of the population that contains the perfect solution set. For the 6-

mux problem, an epoch stands for one complete presentation of the environmental inputs to the 

system. So an epoch here represents the average system response on the past 64 inputs. In 

general, for an n-bit input representation, there are a total of 2
n
 different environmental inputs to 

the system. All simulations (for all 6, 11 & 20- multiplexers) were carried out 20 times using 

different seeds for the random number generator and the averaged results are portrayed.  

As can be seen from Figure 6.6 , the percentage accuracy of the system averaged over the 

20 runs is well above 95% after the 100
th

 epoch. The solution count is the percentage of 

population that contains instances of the perfect solution set (refer to Figure 4.2, left column) 

averaged over the size of an epoch. For instance, at the 350
th

 epoch 90% of the population 

contains instances of the perfect solution. The high percentage accuracy and solution count 

achieved is an indication of how well the system learns its environment. The same simulation 

was done using a half population size (100 classifiers) and resulted in nearly the same level of 

accuracy but with a lower percentage of solution count (85%). The effect of varying the mutation 

and cross over rates was also investigated. 
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Figure 6.6. System performance for the 6-multiplexer problem. 

Figure 6.7 displays the average bid amount of winner classifiers versus the number of 

epochs for the 20 runs. The bid interaction helps to get an insight on how the strength of the 

population varies with time. It gives a quantitative clue on the steady state strength of classifiers 

that influence the system’s decision. At the start of the iteration, the population is more likely to 

be packed with specific classifiers. This is so because in a ternary alphabet system with a random 

initialization, there is a higher chance (2/3
rd

) for each condition bit to be initialized to a non-hash 

symbol. But as iteration goes on, the hierarchical set begins to dominate the population resulting 

in a decline of the bid amount (note that the bid amount is proportional to the specificity of the 

classifier). This trend is clearly evident from the plots in Figure 6.7, Figure 6.10 and Figure 6.13 

having a high pick at the start and declining abruptly until it finally settles to some steady state 

value.  
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Figure 6.7. The average bid amount of winner classifiers at each epoch for 6-mux. 

To check whether the system has evolved to a default hierarchy and its ability to sustain it 

once formed, a tabular result showing a sorted list of classifiers in the final population with their 

creation time and numerosity is displayed in Table 6.3 to Table 6.7 for the three multiplexer 

problems. The entries in the columns (C, A, S, NC and CT) refer to the condition, action, 

maximum strength, numerosity and the creation time of that specific classifier respectively. The 
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population of 200 classifiers).  
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Table 6.3 

A sample pattern of the final population for 6-mux with default of action of 0 

No C A S NC CT 

1 001### 1 2959 29 5 

2 10##1# 1 1935 32 3795 

3 11###1 1 1310 33 4330 

4 01#1## 1 927 33 2460 

5 ###### 0 471 65 1315 

6 ###0## 0 193 1 23600 

7 #####0 0 184 1 3695 

8 ##0### 0 175 1 18655 

9 #0##1# 1 115 1 24475 

 

Table 6.4 displays the same statistics for a default of action 1 and the other 4 perfect 

solutions of action 0 case. Again, these hierarchical set contains 193 instances of the total 

population. The creation time (CT column in the tables) gives an insight on the time of 

emergence of a hierarchical set and whether the learning system was able to maintain it. It was 

measured in terms of iteration, not epoch. A creation time of 0 indicates that particular classifier 

was part of the initial population. In one iteration, an input was presented to the learning system 

and its response to it was evaluated. In 500 epochs, there are a total of 32000 (i.e. 500*64) 

iterations. The time of formation of the default hierarchy can be inferred by looking at the 

creation times of individual classifiers that comprise the hierarchical set. In Table 6.3 for 

instance, considering the top 5 classifiers that comprise a default hierarchy, the highest creation 
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time value is 4330 (nearly at the 9
th

 epoch), which means that the latest classifier that joined the 

hierarchical set is “  ### / ”. And from Table 6.4, the hierarchical set has emerged at iteration 

9340 (nearly at the 19
th

 epoch) and survived afterwards. In both cases, the default classifier has 

the highest numerosity indicating that it was well protected and flourished.  

Table 6.4 

A sample pattern of the final population for 6-mux with default of action of 1 

No C A S NC CT 

1 11###0 0 3087 25 3335 

2 01#0## 0 1419 28 0 

3 10##0# 0 1265 35 9340 

4 000### 0 481 39 6255 

5 ###### 1 445 66 1490 

6 ####1# 1 190 1 21690 

7 ##1### 1 189 1 0 

8 ###1## 1 185 1 1575 

9 #####1 1 182 1 24290 

 

To get a more in depth insight, Figure 6.8 shows the distribution of the population, the 

variation in strength and the potential bid amount as the learning process continues. Through 

guidance of the system using a fitness proportionate resource sharing scheme and discovery of 

new rules by the GA, the learning process evolves the population from a random start to three 

big subpopulations (the default hierarchical set, the perfect classifiers that are not part of the 

hierarchy and the rest). In the sub plots the labels  HS  PSN  and ‘ thers’ stands for the default 
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hierarchical set, perfect solutions that are not part of DHS (for 6-mux for instance, these are 

instances of any of the four classifiers that are not part of the hierarchical set), and classifiers that 

are neither in the DHS nor in the PSND respectively. The DHS emerges only when the default 

and all other exception classifiers emerge in the population. Before the formation of the DHS, 

the exceptions are part of the PSN  and the default is part of the ‘ thers’ group. The ‘ thers’ 

subpopulation group contains a broad variety of classifiers (classifiers with no or several hashes 

which can be correct or wrong) and usually expected to have a larger size at the start of the 

epoch for a random initialization.  

 

Figure 6.8. Subpopulation distribution for 6-mux using a FPRS scheme. 
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Figure 6.8 (a) shows the distribution of the population among these three subpopulations. 

The plot shows at what epoch the hierarchical set has emerged and whether the learning system 

is able to maintain it for long. As expected, both DHS and PSND are very small at the start and 

the DHS starts to dominate the population as the learning process continues. Figure 6.8(b) and 

Figure 6.8(c) show how the total and average strength of classifiers in the default, perfect and 

‘ thers’ set vary with epoch. The ‘ efault Set’ contains all instances of a default classifier and 

the ‘Perfect Set’ includes all perfect classifiers in the population. Here, we are particularly 

interested to make a comparison of the strength between the default and exception classifiers. As 

can be seen from the graph, the perfect set has maintained a higher strength as compared to the 

default rule. A difference in strength between the default and the exception classifiers helps to 

attain a steady state bid separation between these sets (see Figure 6.8(d)) and hence allowing the 

exception classifiers to protect the default when it is wrong. Similar simulations are also done for 

11 and 20 multiplexers (see Figure 6.11 and Figure 6.14). 

6.2.2 Scalability and robustness. For testing the scalability and robustness of the 

proposed niching scheme, a similar simulation was also conducted on more complex and large 

input problems (11 & 20 multiplexers). For these multiplexers, the number of input combinations 

are very large (2
11

 for 11-mux and over a million for 20-mux, 2
20

). Hence, considering all the 

inputs at each epoch would be computationally cumbersome. Instead, only a fraction of 

randomly selected inputs were used out of the total possible combinations of environmental 

inputs at each epoch. For instance, for the 11-mux, an epoch represented only 512 (25% of the 

inputs) iterations or input presentations and the simulation results are shown in Figures 6.9 to 

6.11. The upper curve in Figure 6.9 represents the percentage of correct decision by the system; 

the lower curve is the percentage of the population that contains the perfect solution set. 
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Figure 6.9. System performance for the 11-mux using FPRS scheme. 

A bid history plot for the winner classifiers is displayed in Figure 6.10. As can be seen, 

the bid history settles to a steady state value after some iteration. This is expected because the bid 

amount is a fraction of the strength of winner classifiers which converges to a certain steady state 

value after sufficient iterations (see steady state analysis section of Chapter 4).  

 

Figure 6.10. The average bid amount of winner classifiers at each epoch for 11-mux. 
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Figure 6.11. Subpopulation distribution for 11-mux using FPRS scheme. 
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Table 6.5 

A sample pattern of the final population for 11-mux with default action of 0 

No C A S NC CT 

1 111#######1 1 5499 15 43880 

2 110######1# 1 4851 24 18210 

3 010##1##### 1 4281 30 29290 

4 101#####1## 1 3010 44 17920 

5 100####1### 1 2841 44 13440 

6 011###1#### 1 2296 44 13620 

7 0001####### 1 1750 52 9750 

8 001#1###### 1 1317 62 8790 

9 ########### 0 108 79 81530 

10 #########1# 0 99 1 153540 

 

Figure 6.12 shows the classification accuracy of the learning system for the 20-mux 

problem. To reduce computation time, the solution count plot is not included in this simulation. 

In here an epoch represents 50000 input presentations out of a total of 2
20

 inputs. The plot shows 

the percentage accuracy of the system over the past 50000 randomly selected environmental 

inputs averaged over 20 runs. The classification accuracy of the system here is slightly lower 

(close to 90%) as compared to the 6-mux and 11-mux problems. This is expected taking into 

account the complexity of the system and the randomness in GA which brings new classifiers 

into the system that can possibly perturb its performance (i.e. the GA operation can bring 

inaccurate classifiers for a transient time and degrade the overall system performance). 
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An LCS system is complex and difficult to fully understand and analyze its dynamics 

even for the simpler scenario of a stimulus response system. We have conducted different 

simulations that help to better understand the learning dynamics (emergence of subpopulations, 

strength variation, bid amount) and give insight on the formation of hierarchically cooperative 

subpopulations. The average bid history plot shown in Figure 6.13 indicates the steady state bid 

amount for winner classifiers. As can be seen from the plot, the average bid history finally 

converged to some steady state value. The simulation results for the 20-mux have also shown the 

scalability of the sharing technique for achieving a viable default hierarchy of cooperative rules 

in a competing environment. 

Table 6.6 

A sample pattern of the final population for 11-mux with default action of 1 

No C A S NC CT 

1 111#######0 0 2892 38 31990 

2 001#0###### 0 2739 34 42000 

3 101#####0## 0 2698 32 31220 

4 011###0#### 0 2246 37 24080 

5 110######0# 0 1913 45 17390 

6 0000####### 0 955 44 26790 

7 100####0### 0 790 48 12490 

8 010##0##### 0 635 48 7750 

9 ########### 1 261 66 19990 

10 ########0## 0 223 1 137630 
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Figure 6.12. The system performance (in percentage accuracy) for 20-mux problem. 

 

Figure 6.13. The average bid amount of winner classifiers at each epoch for 20-mux. 
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Figure 6.14(a) shows the distribution of the population along the three clusters. A 

population size of 1000 was used in this simulation and the default hierarchy has emerged after 

the 50
th

 epoch. From the average bid amount subplot, it can also be inferred that there is enough 

bid separation between the default and exception classifiers at steady state. 

 

Figure 6.14. Subpopulation distribution for 20-mux using FPRS scheme. 
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In Table 6.7, the composition of the final population for one typical scenario of default 

rule of action one is shown. As shown in Table 6.7, the learning system has evolved to a 

hierarchical set (the top 17 classifiers) nearly after the 146
th

 epoch which dominates the 

population (99% of the total population) afterwards. In here, a default rule of action 0 (18
th

 row 

in Table 6.7) also emerged and co-existed with a default rule of action 1. But, this classifier has a 

lower strength and much fewer numbers of instances as compared to the other default. Also, the 

other few classifiers emerged nearly at the end of the iteration (see the creation time) due to GA 

indicating that the hierarchical set has successfully taken control of the system decision. 

6.2.3 Control experiments. To make a comparison with other rewarding schemes and 

verify the soundness effectiveness of the fitness proportionate sharing scheme, we conducted two 

sets of control experiments using the same simulation set up (parameter values and random 

seeds) with our technique for the 6 and 11 multiplexer problems. The first set of experiment 

applies uniform sharing and no sharing techniques on a randomly initialized population. The 

uniform sharing scheme distributes the total reward R uniformly among all classifiers in the 

advocate list. This type of sharing is known in literatures as implicit sharing (Horn and Goldberg, 

1996; Wilson, 1989). In the no sharing scheme, each classifier in the advocate list receives a full 

reward R from the environment every time a correct action is predicted. In other words, every 

classifier in the advocate list receives a constant reward independent of the presence or absence 

of other classifiers in its vicinity. This type of sharing assumes the resource of a given 

environmental niche is infinite and can accommodate all the classifiers in the population. Under 

the selection pressure of the GA used during discovery of rules, this sharing scheme leads to 

premature convergence as the whole population tends to converge to the location of an early 

discovered optimum point (Workineh and Homaifar, 2012a).  
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Table 6.7 

A sample pattern of the final population for 20-mux with default action of 1 

No C A S NC CT 

(x103) 

1 0100####0########### 0 337 59 101 

2 0110######0######### 0 327 55 167 

3 0111#######0######## 0 325 58 179 

4 1100############0### 0 314 57 106 

5 1001#########0###### 0 313 58 187 

6 0001#0############## 0 312 59 143 

7 0011###0############ 0 299 59 219 

8 1101#############0## 0 296 61 344 

9 0101#####0########## 0 295 59 198 

10 1110##############0# 0 295 56 219 

11 1010##########0##### 0 294 58 283 

12 1111###############0 0 293 58 151 

13 1011###########0#### 0 289 57 289 

14 1000########0####### 0 277 62 215 

15 00000############### 0 271 59 164 

16 0010##0############# 0 252 60 183 

17 #################### 1 230 57 7341 

18 #################### 0 228 2 9413 

19 1################### 1 106 1 9962 

20 1111###############0 1 90 1 9999 
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The simulation results for this control run are shown in Figure 6.15 and Figure 6.16. As 

can be seen from the population distribution in subplots a and b of Figure 6.15 and Figure 6.16, a 

viable default hierarchy does not emerge under both reward allocation techniques, at least for the 

same simulation set up with the fitness proportionate resource sharing scheme. The results are 

also consistence with previous research where there is no claim on the formation of a viable 

default hierarchy using any of the reward allocation schemes mentioned. 

 

Figure 6.15. Result for 6-mux with uniform and no sharing schemes. 

0 100 200 300 400 500
0

50

100

150

200
Uniform Sharing Scheme

N
u
m

b
er

 o
f 

C
la

ss
if

ie
rs

 (
A

v
g
.)

(a)

 

 

DHS

PSND

Others

0 100 200 300 400 500
0

50

100

150

200
No Sharing Scheme

(b)

 

 

DHS

PSND

Others

0 100 200 300 400 500
0

2

4

6

8
x 10

4

T
o
ta

l 
S

tr
en

g
th

(c)

 

 
Default Set

Perfect Set

Others

0 100 200 300 400 500
0

5

10

15
x 10

5

(d)

 

 

Default Set

Perfect Set

Others

0 100 200 300 400 500
150

200

250

300

350

400

A
v
er

ag
e 

S
tr

en
g
th

(e)

 

 

Default Set

Perfect Set

Others

0 100 200 300 400 500
0

2000

4000

6000

8000

10000

(f)

 

 

Default Set

Perfect Set

Others

0 100 200 300 400 500
0

5

10

15

20

A
v
er

ag
e 

B
id

 A
m

o
u
n
t

(g)

Epoches

 

 

Default Set

Perfect Set

0 100 200 300 400 500
0

100

200

300

400

500

(h)

Epoches

 

 

Default Set

Perfect Set



102 

 

 

Figure 6.16. Result for 11-mux with uniform and no sharing schemes. 
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and the results obtained are shown in Figure 6.17 and Figure 6.18 respectively. The uniform 

sharing technique has a better performance in maintaining the default hierarchical set as 

compared to the no sharing techniques. This is evident from the population distribution subplots 

a and b of Figure 6.17 and Figure 6.18 (both techniques maintain a larger DHS throughout the 

learning process). However, the experiments are in no way conclusive that the two techniques 

are able to sustain a default hierarchy once it has emerged for a random initialization.  

6.2.4 Theoretical prediction vs. simulation results. The steady state analysis section 

provided a theoretical formulation for the expected value of the total strength at steady state for 

the default and exception classifiers under the specified assumptions. It is logical to compare the 

similarity between the actual values of the total strength obtained using simulations (see part (b) 

of Figure 6.8, Figure 6.11 and Figure 6.14) with that of the theoretical estimates given in Chapter 

4. For the specified values of the parameters used during simulation (R=1000, K=0.106, 

K1=0.006 and K2=0.001), the steady state value of the total strength for the default group using 

equation (4.15) would be ~=8.98*10
3
. Also, for the exception group, using these values in 

equation (4.25), the steady state total strength value would be ~=3.54*10
4
 for 6-mux, 6.62*10

4
 

for 11-mux and 1.17*10
5
 for 20-mux. The corresponding actual steady state values from 

simulations in Figure 6.8(b), Figure 6.11(b) and Figure 6.14(b) respectively, are very close to 

these estimated values. The small deviations (i.e. the estimated values are slightly higher than the 

actual values) are expected due to the simplifying assumption we have made during the 

formulation. Under the assumption we made, the steady state formulation disregards the impact 

of other classifiers (classifiers that are not in the default hierarchical set). But in practice, other 

classifiers, though very small in number, always exist in the system due to discovery by GA and 

there is a chance that they can reduce the reward share of both the default and exception group. 
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Figure 6.17. A result to check whether a default hierarchy can be sustained under other sharing 

schemes for 6-mux 

0 100 200 300 400 500
0

50

100

150

200
Uniform Sharing Scheme

N
u
m

b
e
r
 o

f
 C

la
s
s
if

ie
r
s
 (

A
v
g
.)

(a)

 

 

DHS

PSND

Others

0 100 200 300 400 500
0

50

100

150

200
No Sharing Scheme

(b)

 

 

DHS

PSND

Others

0 100 200 300 400 500
0

1

2

3

4
x 10

4

T
o
ta

l 
S

tr
e
n
g
th

(c)

 

 

Default Set

Perfect Set

Others

0 100 200 300 400 500
0

2

4

6

8

10
x 10

5

(d)

 

 

Default Set

Perfect Set

Others

0 100 200 300 400 500
100

150

200

250

A
v
e
r
a
g
e
 S

tr
e
n
g
th

(e)

 

 

Default Set

Perfect Set

Others

0 100 200 300 400 500
0

2000

4000

6000

8000

(f)

 

 

Default Set

Perfect Set

Others

0 100 200 300 400 500
0

2

4

6

8

10

A
v
e
r
a
g
e
 B

id
 A

m
o
u
n
t

(g)

Epoches

 

 

Default Set

Perfect Set

0 100 200 300 400 500
0

100

200

300

(h)

Epoches

 

 

Default Set

Perfect Set



105 

 

 

Figure 6.18. Simulations to check whether a default hierarchy can be sustained using other 

sharing schemes for 11-mux. 
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CHAPTER 7  

Conclusion and Future Work 

The “beauty of diversity” makes more real sense to evolutionary algorithms than to any 

other areas of discipline. Embracing useful diversity enables evolutionary algorithms to discover 

multiple solutions to a problem and hence extend their global search ability for broad 

applications such as classification and dynamic clustering. This chapter concludes the 

dissertation by emphasizing the major achievements made and suggesting ideas for future 

research path. The major component of this dissertation was the introduction of a novel, 

ecologically inspired niching technique for evolutionary algorithms. We emphasized its 

application for evolving a cooperative population of rules in classifiers, multimodal optimization 

and dynamic clustering. A substantial contribution to the field of learning classifier systems 

(LCSs) was made through a novel resource sharing technique for discovering and maintaining 

default hierarchies. 

7.1. Summary  

Chapter 1 gave a brief introduction on evolutionary algorithms. A bigger picture of the 

problem addressed in this work, major contributions made and the scope of the work were 

presented. Before addressing the major thrust of this work, a survey of previous research in this 

area was a logical step. Chapter 2 did just that by giving a detailed review of previous research 

on issues in multimodal function optimization, various niching techniques, challenges in niche 

radius estimation and hierarchical cooperation in classifiers. The major contribution of this work 

was presented in Chapter 3. Fitness Proportionate Niching (FPN) was introduced. When the 

objective function has several unequal peaks with a large peak ratio, the traditional niching 

techniques tend to discover only the location of the highest peak or require a very large 
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population size in order to discover all the peaks. This demand of large population size added to 

the distance comparison between individuals makes the traditional sharing techniques 

computationally cumbersome. The performance of FPN was compared with that of existing 

sharing method for optimizing multimodal functions with unequal peaks. A technique for 

estimating the niche radius, a mathematical formulation, complexity analysis and an ecological 

analogy were also given. Both simulation results and mathematical analyses showed that the 

performance of the proposed niching technique is insensitive to the fitness difference of the 

peaks. When individuals share the resource of a given niche in proportion to their fitness, the 

population distributes among all the peaks uniformly irrespective of the fitness variation at the 

niches. In other words, high peaks in the multimodal fitness landscape are no longer strong 

population attractors. This enabled the emergence of stable subpopulations at all the optimum 

points in the search space and avoids the population size threshold requirement.  

Chapter 4 presented a breakthrough in LCS. A new reinforcement technique using FPN 

based resource sharing was applied. Developing algorithms that lead to the emergence and 

maintenance of a default hierarchy in an LCS has remained an unachieved goal for researchers in 

this community for decades. The resource sharing technique presented in this work has filled the 

gap in the research by enabling the co-evolution of default and exception classifiers in such a 

way that exception classifiers protect the default from making mistakes without starving it.  

To model an environment with a reasonable accuracy, an LCS needs to have a 

mechanism to build a cooperative set of diverse rules in the population. Learning in an LCS is an 

ongoing process of discovering cooperative and competitive rules by the GA through the 

guidance provided by reinforcement. For the best exploration, an LCS requires an intensive 

search by applying the GA vigorously while embracing useful diversity in the population. The 
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need to maintain diverse subpopulations compels the use of a restorative force to counterbalance 

the selection pressure with some sort of diversity maintaining mechanism. Depending on the 

complexity of the working environment, adequate modelling of the environment might require a 

huge number of rules that collectively provide a better model of the environment. Building a 

hierarchical set of rules, where accurate and more specific rules respond to a subset of the 

situations covered by more general but less accurate default rules is vital to achieve a compact 

rule set size, especially when dealing with an environment that has huge numbers of states. This 

requires the co-existence of exception and default rules in the system so that the exception rules 

can protect the default rule from making mistakes without starving them. To the best of our 

knowledge, the techniques proposed so far have failed to provide protection without a 

subsequent starvation of the default. The proposed niching scheme was applied for learning a 

Boolean function. The robustness and scalability of the algorithm was tested by solving 

multiplexer problems with various numbers (6, 11 and 20) of inputs. The results obtained for all 

the simulations proved the effectiveness of the proposed niching technique. 

In Chapter 5, the feasibility of FPN for dynamic clustering was demonstrated using both 

real and synthetic data. The chapter showed how an optimization of a multimodal function with 

unequal peaks can be mapped into a clustering problem. A formulation of the fitness function for 

the GA was provided. It was shown that FPN based clustering can be an alternative clustering 

method when knowledge about the data (e.g. distribution of the data, number of clusters etc) is 

not known in advance. A detailed discussion of the simulation results was given in Chapter 6. 

The simulation results obtained are consistent with the mathematical formulations of the 

corresponding approaches given in previous chapters.  
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7.2. Future Work  

The results presented herein can inspire a number of research directions to extend the 

ideas presented in this work. This section pinpoints some of them. 

7.2.1 Multi-label classification. In Chapter 4, we demonstrated a successful application 

of FPN for evolving hierarchical cooperation in classifiers. The classification problem solved 

was a single-label classification problem, where an instance belongs to only one label or class. 

This is foundational research and can serve as point of departure for more sophisticated 

biologically inspired computation techniques required for multi-label classification. Two 

promising research lines that can benefit from this work are protein sequence classification and 

semantic scene identification. There has been quite a lot of research on single label classification 

of data. In multi-label classification, an instance in the training set is associated with a set of 

classes, and the task is to output a set of classes whose size is unknown a priori for each unseen 

instance (Tsoumakas and Katakis, 2007; Tsoumakas et al., 2010). For example, in 

bioinformatics, a given protein sequence can be associated with different functions (Jiang and 

McQuay, 2012). In medicine a patient may be suffering from multiple diseases at the same time. 

In semantic scene identification a given picture can belong to different categories (for instance 

both beach and sunset) (Shen et al., 2004). Effective application of multi label techniques can 

also be very crucial to understanding complex biological systems. For instance, knowing the 

protein mapping from sequence to structure and then structure to function can help in 

discovering medical drugs for diseases of no known cure. 

Existing multi-label classification approaches follow two general trends: problem 

transformation and algorithmic adaptation (Tsoumakas and Katakis, 2007; Tsoumakas et al., 

2010). There are four major intuitive approaches followed in traditional training techniques. The 
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first ignores instances belonging to several classes. Another option uses a subjective approach 

where an instance is assigned to the most obvious class during training. The third option is to 

extend the number of classes (labels) by forming a hybrid class to accommodate the multi-label 

data. The drawback of this approach is that it substantially increases the number of classes to be 

considered and the data in such combined classes are usually sparse. The fourth option is to 

decompose each multi-label instance into multiple independent binary classification problems 

(one per category). But this approach does not consider the correlations between the different 

labels of each instance. In reality, different functional classes are naturally dependent on one 

another. Thus, this approach ignores the inherent correlations among different classes, which 

often could be an important indicator for deciding the class memberships, especially when a 

severe unbalanced data problem occurs. Instead, in multi-label learning, class memberships can 

be inferred through label correlations, which provide an opportunity to improve the classification 

accuracy. Evaluation of the learning technique is also another challenge as standard single label 

evaluation metrics such as precision, recall and accuracy can be vague for multi-label 

classification. Due to the overlap of the classes the output of the classifier can be perfectly 

correct, partially correct or fully wrong depending on the number of associations of a particular 

instance.  

7.2.2 Extension to real-valued LCS. We have considered a stimulus-response (Nasraoui 

and Krishnapuram) learning system for binary Boolean function learning. When the inputs are 

real valued representation becomes an issue. This is particularly because the inputs can have any 

value and the search space grows significantly. LCSs with real-valued inputs would be a good 

area to investigate further as it helps to expand the application of the technique for real-valued 

data classification.  
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7.2.3 More clustering applications. The application of FPN for dynamic clustering was 

given in Chapter 5. However, it was by no means thorough and hence further exploration by 

comparing the performance of FPN for dynamic clustering with other existing algorithms is 

essential. Investigating whether the clustering algorithm is able to discover clusters of arbitrary 

shape and whether it is robust to outliers is a good starting point to pursue.  

7.2.4 Evolution dynamics. The empirical results given in Chapter 6 have shown the 

emergence of subpopulations (default and exception classifiers) as the learning process goes on. 

The steady state analysis addressed action-reward dynamics by examining the steady state 

behaviour of subpopulation of classifiers for the typical scenario of a stimulus-response LCS. A 

more general and detailed analysis of the evolution dynamics on the emergence of 

subpopulations, the composition of the population at equilibrium and the maintenance of niches 

under the selection pressure of the GA are interesting areas to explore in future research. 

 

  



112 

 

References 

Ando, S., Sakuma, J., & Kobayashi, S. (2005). Adaptive isolation model using data clustering 

for multimodal function optimization. Paper presented at the Proceedings of the 2005 

conference on Genetic and evolutionary computation. 

Asoh, H., & Mühlenbein, H. (1994). On the mean convergence time of evolutionary algorithms 

without selection and mutation. Parallel Problem Solving from Nature—PPSN III, 88-97. 

Bacardit , J. (2004). Pittsburgh genetic-based machine learning in the data mining era: 

Representations, generalization, and run-time. Universitat Ramon Llull.    

Bacardit, J., Goldberg, D., & Butz, M. (2007). Improving the performance of a Pittsburgh 

learning classifier system using a default rule. In T. Kovacs, X. Llorà, K. Takadama, P. 

Lanzi, W. Stolzmann & S. Wilson (Eds.), Learning Classifier Systems (Vol. 4399, pp. 

291-307): Springer Berlin Heidelberg. 

Back, T. (1996). Evolutionary algorithms in theory and practice: Evolution strategies, 

evolutionary programming, genetic algorithms: Oxford University Press, USA. 

Back, T., & Schwefel, H. (1993). An overview of evolutionary algorithms for parameter 

optimization. Evolutionary computation, 1(1), 1-23. 

Booker, L. (1982). Intelligent behavior as an adaptation to the task environment. University of 

Michigan. 

Booker, L. (1989). Triggered rule discovery in classifier systems. Paper presented at the 

Proceedings of the 3rd International Conference on Genetic Algorithms.  

Booker, L., Goldberg, D., & Holland, J. (1990). Classifier systems and genetic algorithms. In J. 

G. Carbonell (Ed.), Machine learning: paradigms and methods (pp. 235-282): Elsevier 

North-Holland, Inc. 



113 

 

Butz, M., Kovacs, T., Lanzi, P., & Wilson, S. (2004). Toward a theory of generalization and 

learning in XCS. Evolutionary Computation, IEEE Transactions on, 8(1), 28-46. 

Casillas, J., Carse, B., & Bull, L. (2007). Fuzzy-XCS: A Michigan genetic fuzzy system. Fuzzy 

Systems, IEEE Transactions on, 15(4), 536-550. 

Chang, D., Zhang, X., Zheng, C., & Zhang, D. (2010). A robust dynamic niching genetic 

algorithm with niche migration for automatic clustering problem. Pattern recognition, 

43(4), 1346-1360. 

Chang, D., Zhao, Y., & Zheng, C. (2011). A real-valued quantum genetic niching clustering 

algorithm and its application to color image segmentation. Paper presented at the 

Intelligent Computation and Bio-Medical Instrumentation (ICBMI), 2011 International 

Conference on. 

Cioppa, A., Stefano, C., & Marcelli, A. (2004). On the role of population size and niche radius in 

fitness sharing. Evolutionary Computation, IEEE Transactions on, 8(6), 580-592. 

Cioppa, A., Stefano, C., & Marcelli, A. (2007). Where are the niches? Dynamic fitness sharing. 

evolutionary computation, IEEE transactions on, 11(4), 453-465. 

Davidor, Y. (1991). A naturally occurring niche & species phenomenon: The model and first 

results. Paper presented at the Proceedings of the Fourth International Conference on 

Genetic Algorithms. 

Deb, K., & Goldberg, D. (1989). An investigation of niche and species formation in genetic 

function optimization. Paper presented at the Proceedings of the 3rd International 

Conference on Genetic Algorithms. 

Dick, G. (2010). Automatic identification of the niche radius using spatially-structured clearing 

methods. Paper presented at the Evolutionary Computation (CEC), 2010 IEEE Congress. 



114 

 

Dick, G., & Whigham, P. (2006). Spatially-structured evolutionary algorithms and sharing: Do 

they mix? Simulated Evolution and Learning, 457-464. 

Dick, G., & Whigham, P. (2008). Spatially-structured sharing technique for multimodal 

problems. Journal of Computer Science and Technology, 23(1), 64-76. 

Duan, L., Xu, L., Guo, F., Lee, J., & Yan, B. (2007). A local-density based spatial clustering 

algorithm with noise. Information Systems, 32(7), 978-986. 

Floudas, C., & Pardalos, P. (1996). State of the art in global optimization: Computational 

methods and applications. Nonconvex optimization and its applications: Kluwer 

Academic, Dordrecht. 

Forrest, S., Javornik, B., Smith, R., & Perelson, A. (1993). Using genetic algorithms to explore 

pattern recognition in the immune system. Evolutionary computation, 1(3), 191-211. 

Frey, P., & Slate, D. (1991). Letter recognition using Holland-style adaptive classifiers. Machine 

Learning, 6(2), 161-182. 

Giráldez, R., Aguilar-Ruiz, J., & Riquelme, J. (2003). Natural coding: A more efficient 

representation for evolutionary learning. Paper presented at the Genetic and 

Evolutionary Computation—GECCO 2003. 

Goldberg, D. (1983). Computer-aided gas pipeline operation using genetic algorithms and rule 

learning. 

Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning: 

Addison-Wesley. 

Goldberg, D., Deb, K., & Horn, J. (1992). Massive multimodality, deception, and genetic 

algorithms. Urbana, 51, 61801. 



115 

 

Goldberg, D., & Richardson, J. (1987). Genetic algorithms with sharing for multimodal function 

optimization. Paper presented at the Proceedings of the Second International Conference 

on Genetic Algorithms on Genetic algorithms and their application. 

Hilliard, M., Liepins, G., Palmer, M., Morrow, M., & Richardson, J. (1987). A classifier based 

system for discovering scheduling heuristics. Paper presented at the Proceedings of the 

Second International Conference on Genetic Algorithms on Genetic algorithms and their 

application. 

Holland, J. (1975). Adaptation in natural and artificial systems, University of Michigan press. 

Ann Arbor, MI, 1(97), 5. 

Holland, J. (1976). Adaptation progress in theoretical biology (Vol. 4). 

Holland, J. (1980). Adaptive algorithms for discovering and using general patterns in growing 

knowledge bases. International Journal of Policy Analysis and Information Systems, 

4(3), 245-268. 

Holland, J. (1985). Properties of the bucket brigade. Paper presented at the Proceedings of the 

1st International Conference on Genetic Algorithms.  

Holland, J. (1986). Escaping brittleness: The possibilities of general purpose learning algorithms 

applied to parallel rule-based system. Machine Learning, 593-623. 

Holland, J. (1992). Adaptation in natural and artificial systems: An introductory analysis with 

applications to biology, control, and artificial intelligence: MIT Press. 

Holland, J., Booker, L., Colombetti, M., Dorigo, M., Goldberg, D., Forrest, S., Stolzmann, W. 

(2000). What is a learning classifier system? Learning Classifier Systems, 3-32. 

Holland, J., & Holyoak, K. (1988). J., Nisbett RE, Thagard PR (1988). Induction-Processes of 

inference, learning, and discovery: Cambridge (Mass): MIT Press. 



116 

 

Holland, J., & Reitman, J. (1977). Cognitive systems based on adaptive algorithms. SIGART 

Bull.(63), 49-49. 

Holland, J. H. (1995). Escaping brittleness: The possibilities of general-purpose learning 

algorithms applied to parallel rule-based systems. In F. L. George (Ed.), Computation 

&amp; intelligence (pp. 275-304): American Association for Artificial Intelligence. 

Homaifar, A., Goldberg, D., & Carroll, C. (1988). Boolean function learning with a classifier 

system. 264-272. 

Horn, J. (1993). Finite Markov chain analysis of genetic algorithms with niching. Forrest, 727, 

110-117. 

Horn, J., & Goldberg, D. (1996). Natural niching for evolving cooperative classifiers. Paper 

presented at the Proceedings of the First Annual Conference on Genetic Programming, 

Stanford, California.. 

Horn, J., Goldberg, D., & Deb, K. (1994). Implicit niching in a learning classifier system: 

Nature's way. Evolutionary computation, 2(1), 37-66. 

Jiang, J., & McQuay, L. (2012). Predicting protein function by multi-label correlated semi-

supervised learning. Computational Biology and Bioinformatics, IEEE/ACM 

Transactions on, 9(4), 1059-1069. 

Jong, K. (1975). Analysis of the behavior of a class of genetic adaptive systems. 

Kovacs, T. (2004). Strength or accuracy: Credit assignment in learning classifier systems: 

Springer. 

Lanzi, P., & Riolo, R. (2000). A roadmap to the last decade of learning classifier system research 

(from 1989 to 1999). Learning Classifier Systems, 33-61. 



117 

 

Lee, C., Cho, D., & Jung, H. (1999). Niching genetic algorithm with restricted competition 

selection for multimodal function optimization. Magnetics, IEEE Transactions on, 35(3), 

1722-1725. 

Li, J., Balazs, M., Parks, G., & Clarkson, P. (2002). A species conserving genetic algorithm for 

multimodal function optimization. Evolutionary computation, 10(3), 207-234. 

Mahfoud, S. (1994a). Crossover interactions among niches. Paper presented at the Evolutionary 

Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings 

of the First IEEE Conference on. 

Mahfoud, S. (1994b). Population size and genetic drift in fitness sharing. Urbana, 51, 61801. 

Mahfoud, S. (1995). Niching methods for genetic algorithms. Urbana, 51, 61801. 

Mengshoel, O., & Goldberg, D. (1999). Probabilistic crowding: Deterministic crowding with 

probabilistic replacement. Paper presented at the Proc. of the Genetic and Evolutionary 

Computation Conference (GECCO-99). 

Miller, B., & Shaw, M. (1996). Genetic algorithms with dynamic niche sharing for multimodal 

function optimization. Paper presented at the Evolutionary Computation, 1996., 

Proceedings of IEEE International Conference on. 

Nasraoui, O., & Krishnapuram, R. (2000). A novel approach to unsupervised robust clustering 

using genetic niching. Paper presented at the Fuzzy Systems, 2000. FUZZ IEEE 2000. 

The Ninth IEEE International Conference on. 

Pardalos, P., & Romeijn, H. (2002). Handbook of global optimization (Vol. 2): Springer. 

Petrowski, A. (1996). A clearing procedure as a niching method for genetic algorithms. Paper 

presented at the Evolutionary Computation, 1996., Proceedings of IEEE International 

Conference on. 



118 

 

Riolo, R. (1987). Bucket brigade performance: II. Default hierarchies. Paper presented at the 

Proceedings of the Second International Conference on Genetic Algorithms on Genetic 

algorithms and their application, Cambridge, Massachusetts, USA.  

Robertson, G., & Riolo, R. (1988). A tale of two classifier systems. Machine Learning, 3(2), 

139-159. 

Sander, J., Ester, M., Kriegel, H., & Xu, X. (1998). Density-based clustering in spatial databases: 

The algorithm GDBSCAN and its applications. Data Mining and Knowledge Discovery, 

2(2), 169-194. 

Sareni, B., & Krahenbuhl, L. (1998). Fitness sharing and niching methods revisited. 

Evolutionary Computation, IEEE Transactions on, 2(3), 97-106. 

Shen, X., Boutell, M., Luo, J., & Brown, C. (2004). Multilabel machine learning and its 

application to semantic scene classification. Paper presented at the Proceedings of SPIE. 

Sheng, W., Tucker, A., & Liu, X. (2004). Clustering with niching genetic K-means algorithm. 

Paper presented at the Genetic and Evolutionary Computation–GECCO 2004. 

Shir, O., & Back, T. (2005). Dynamic niching in evolution strategies with covariance matrix 

adaptation. Paper presented at the Evolutionary Computation, 2005. The 2005 IEEE 

Congress on. 

Shir, O., & Back, T. (2006). Niche radius adaptation in the CMA-ES niching algorithm. Parallel 

Problem Solving from Nature-PPSN IX, 142-151. 

Shir, O., Emmerich, M., & Back, T. (2007). Self-adaptive niching CMA-ES with Mahalanobis 

metric. Paper presented at the Evolutionary Computation, 2007. CEC 2007. IEEE 

Congress on. 



119 

 

Smith, R., Forrest, S., & Perelson, A. (1993). Searching for diverse, cooperative populations with 

genetic algorithms. Evolutionary computation, 1(2), 127-149. 

Smith, R., & Goldberg, D. (1990, 26-27 Mar 1990). Reinforcement learning with classifier 

systems. Paper presented at the AI, Simulation and Planning in High Autonomy Systems, 

1990., Proceedings. 

Smith, R., & Goldberg, D. (1992). Reinforcement learning with classifier systems: Adaptive 

default hierarchy formation. journal of Applied Artificial Intelligence, 6(1), 79-102. 

Smith, R., & Valenzuela-Rendón, M. (1989). A study of rule set development in learning 

classifier system. Paper presented at the Proceedings of the third international conference 

on Genetic algorithms. 

Smith, S. (1980). A learning system based on genetic adaptive algorithms. University of 

Pittsburgh. 

Streichert, F., Stein, G., Ulmer, H., & Zell, A. (2004). A clustering based niching EA for 

multimodal search spaces. Paper presented at the Artificial Evolution. 

Tsoumakas, G., & Katakis, I. (2007). Multi-label classification: An overview. International 

Journal of Data Warehousing and Mining (IJDWM), 3(3), 1-13. 

Tsoumakas, G., Katakis, I., & Vlahavas, I. (2010). Mining multi-label data. Data mining and 

knowledge discovery handbook, 667-685. 

Weise, T. (2008). Global optimization algorithms–Theory and application. URL: http://www. it-

weise. de, Abrufdatum, 1, 24. 

Wilson, S. (1985). Knowledge growth in an artificial animal. Paper presented at the Proceedings 

of the 1st International Conference on Genetic Algorithms. 



120 

 

Wilson, S. (1989). Bid competition and specificity reconsidered. Journal of Complex Systems, 

2(6), 705-723. 

Wilson, S. (1994). ZCS: A zeroth level classifier system. Evolutionary computation, 2(1), 1-18. 

Wilson, S. (1995). Classifier fitness based on accuracy. Evolutionary computation, 3(2), 149-

175. 

Wilson, S., & Goldberg, D. (1989). A critical review of classifier systems Proceedings of the 

third international conference on Genetic algorithms: Morgan Kaufmann Publishers Inc. 

Workineh, A., & Homaifar, A. (2011). Robust bidding in learning classifier systems using loan 

and bid history. Complex Systems, 19(3), 287. 

Workineh, A., & Homaifar, A. (2012a). Fitness proportionate niching: Maintaining diversity in 

a rugged fitness landscape. Paper presented at the 2012 International Conference on 

Genetic and Evolutionary Methods, Las Vegas. 

Workineh, A., & Homaifar, A. (2012b). Fitness proportionate reward sharing: A viable default 

hierarchy formation strategy in LCS. Paper presented at the the 2012 International 

Conference on Genetic and Evolutionary Methods, Las Vegas.  

Workineh, A., & Homaifar, A. (2012c). A new bidding strategy in LCS using a decentralized 

loaning and bid history. Paper presented at the Aerospace Conference, 2012 IEEE. 

Yang, M., & Wu, K. (2004). A similarity-based robust clustering method. Pattern Analysis and 

Machine Intelligence, IEEE Transactions on, 26(4), 434-448. 

Zhang, G., Yu, L., Shao, Q., & Feng, Y. (2006). A clustering based GA for multimodal 

optimization in uneven search space. Paper presented at the Intelligent Control and 

Automation, 2006. WCICA 2006. The Sixth World Congress on.  



121 

 

Appendix A 

The DNINE algorithm is given below: 

Initialize: the population pop, the population size N, the niche radius (o).  

NA(t)=0 (the number of actual niches at generation t) 

NM(t)=0 (the number of niche master candidates) 

NC=0 (the niche master candidate set) 

DN =0 (the dynamic niche set) 

The niche master identification step: 

    For i=1 to N do 

        If the ith individual is not marked then 

                NM(t)= NA(t)+1; 

                n(NM(t))=1 (the number of individuals in the NM(t)
th

 niche candidate set) 

            For j=i+1 to P do 

                If(d(i,j)<o) and (j
th

 individual is not marked) 

                    Insert j
th

 individual in to the niche master candidate set NC, 

                    n(NM(t))=n(NM(t))+1 

                End if 

            End for 

            If (n(NM(t))>1) then 

                NA(t)= NA(t)+1 

                Mark i
th

 individual as the niche master of the NA(t)
th

 niche 

                Insert the pair (i
th

 individual, n(NM(t))) in DN 

            End if 
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        End if 

    End for 

And the niche expansion (niche refining step) is as shown below:  

For l=1 to u(t) 

 find the nearest neighbor of each niche master candidate.  

 determine whether the two niches communicate 

 if there is communication between them 

  merge the two niches 

 otherwise 

  both remain in the population 

End for 

End for 
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