17 research outputs found
Recommended from our members
A rigid coherent anti-Stokes Raman scattering endoscope with high resolution and a large field of view
Nonlinear optical endoscopy is an attractive technique for biomedical imaging since it promises to give access to high resolution imaging in vivo. Among the various techniques used for endoscopic contrast generation, coherent anti-Stokes Raman scattering (CARS) is especially interesting. CARS endoscopy allows molecule specific imaging of unlabeled samples. In this contribution, we describe the design, implementation, and experimental characterization of a rigid, compact CARS endoscope with a spatial resolution of 750 nm over a field of view of roughly 250 μm. Omission of the relay optics and use of a gradient index lens specifically designed for this application allow one to realize these specifications in an endoscopic unit which is 2.2 mm wide over a length of 187 mm, making clinical applications during surgical interventions possible. Multimodal use of the endoscope is demonstrated with images of samples with neurosurgical relevance.Nonlinear optical endoscopy is an attractive technique for biomedical imaging since it promises to give access to high resolution imaging in vivo. Among the various techniques used for endoscopic contrast generation, coherent anti-Stokes Raman scattering (CARS) is especially interesting. CARS endoscopy allows molecule specific imaging of unlabeled samples. In this contribution, we describe the design, implementation, and experimental characterization of a rigid, compact CARS endoscope with a spatial resolution of 750 nm over a field of view of roughly 250 μm. Omission of the relay optics and use of a gradient index lens specifically designed for this application allow one to realize these specifications in an endoscopic unit which is 2.2 mm wide over a length of 187 mm, making clinical applications during surgical interventions possible. Multimodal use of the endoscope is demonstrated with images of samples with neurosurgical relevance
Radiation enhancement and "temperature" in the collapse regime of gravitational scattering
We generalize the semiclassical treatment of graviton radiation to
gravitational scattering at very large energies and finite
scattering angles , so as to approach the collapse regime of impact
parameters . Our basic tool is the
extension of the recently proposed, unified form of radiation to the ACV
reduced-action model and to its resummed-eikonal exchange. By superimposing
that radiation all-over eikonal scattering, we are able to derive the
corresponding (unitary) coherent-state operator. The resulting graviton
spectrum, tuned on the gravitational radius , fully agrees with previous
calculations for small angles but, for sizeable angles
acquires an exponential cutoff of the large
region, due to energy conservation, so as to emit a finite fraction
of the total energy. In the approach-to-collapse regime of we find
a radiation enhancement due to large tidal forces, so that the whole energy is
radiated off, with a large multiplicity and a
well-defined frequency cutoff of order .
The latter corresponds to the Hawking temperature for a black hole of mass
notably smaller than .Comment: 5 pages, 2 figures, talk presented at the European Physical Society
Conference on High Energy Physics, 5-12 July, Venice, Ital
Advanced Fluorescence Microscopy Techniques-FRAP, FLIP, FLAP, FRET and FLIM
Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Forster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research
Structured Directional Coupler Pair For Multiplexing Of Degenerate Modes
A technique for multiplexing degenerate modes in circular multimode fibers using the structure directional coupler pair is presented. The same device can be used for demultiplexing of degenerated modes in combination with MIMO processing. © 2013 OSA
Structured Directional Coupler Pair For Multiplexing Of Degenerate Modes
A technique for multiplexing degenerate modes in circular multimode fibers using the structure directional coupler pair is presented. The same device can be used for demultiplexing of degenerated modes in combination with MIMO processing. © 2013 OSA
Structured Directional Coupler Pair For Multiplexing Of Degenerate Modes
A technique for multiplexing degenerate modes in circular multimode fibers using the structure directional coupler pair is presented. The same device can be used for demultiplexing of degenerated modes in combination with MIMO processing. © 2013 OSA
Chronic disruption of the late cholesterol synthesis leads to female-prevalent liver cancer
While the role of cholesterol in liver carcinogenesis remains controversial, hepatocellular carcinoma generally prevails in males. Herein, we uncover pathways of female-prevalent progression to hepatocellular carcinoma due to chronic repression of cholesterogenic lanosterol 14α-demethylase (CYP51) in hepatocytes. Tumors develop in knock-out mice after year one, with 2:1 prevalence in females. Metabolic and transcription factor networks were deduced from the liver transcriptome data, combined by sterol metabolite and blood parameter analyses, and interpreted with relevance to humans. Female knock-outs show increased plasma cholesterol and HDL, dampened lipid-related transcription factors FXR, LXRα:RXRα, and importantly, crosstalk between reduced LXRαand activated TGF-βsignalling, indicating a higher susceptibility to HCC in aging females. PI3K/Akt signalling and ECM-receptor interaction are common pathways that are disturbed by sex-specific altered genes. Additionally, transcription factors (SOX9)2 and PPARα were recognized as important for female hepatocarcinogenesis, while overexpressed Cd36, a target of nuclear receptor RORC, is a new male-related regulator of ECM-receptor signalling in hepatocarcinogenesis. In conclusion, we uncover the sex-dependent metabolic reprogramming of cholesterol-related pathways that predispose for hepatocarcinogenesis in aging females. This is important in light of increased incidence of liver cancers in post-menopausal women
Feasibility studies of multimodal nonlinear endoscopy using multicore fiber bundles for remote scanning from tissue sections to bulk organs
Abstract Here, we report on the development and application of a compact multi-core fiber optical probe for multimodal non-linear imaging, combining the label-free modalities of Coherent Anti-Stokes Raman Scattering, Second Harmonic Generation, and Two-Photon Excited Fluorescence. Probes of this multi-core fiber design avoid moving and voltage-carrying parts at the distal end, thus providing promising improved compatibility with clinical requirements over competing implementations. The performance characteristics of the probe are established using thin cryo-sections and artificial targets before the applicability to clinically relevant samples is evaluated using ex vivo bulk human and porcine intestine tissues. After image reconstruction to counteract the data’s inherently pixelated nature, the recorded images show high image quality and morpho-chemical conformity on the tissue level compared to multimodal non-linear images obtained with a laser-scanning microscope using a standard microscope objective. Furthermore, a simple yet effective reconstruction procedure is presented and demonstrated to yield satisfactory results. Finally, a clear pathway for further developments to facilitate a translation of the multimodal fiber probe into real-world clinical evaluation and application is outlined