3,688 research outputs found

    A Parallel SSOR Preconditioner for Lattice QCD

    Get PDF
    A parallelizable SSOR preconditioning scheme for Krylov subspace iterative solvers in lattice QCD applications involving Wilson fermions is presented. In actual Hybrid Monte Carlo and quark propagator calculations it helps to reduce the number of iterations by a factor of 2 compared to conventional odd-even preconditioning. This corresponds to a gain in cpu-time of 30\% - 70\% over odd-even preconditioning.Comment: Talk presented at LATTICE96(algorithms), 3 pages, LaTeX file, 3 epsf-files include

    SSOR Preconditioning of Improved Actions

    Get PDF
    We generalize local lexicographic SSOR preconditioning for the Sheikholeslami-Wohlert improved Wilson fermion action and the truncated perfect free fermion action. In our test implementation we achieve performance gains as known from SSOR preconditioning of the standard Wilson fermion action.Comment: 3 pages, Latex, 3 figures, Talk presented at Lattice'9

    Linear systems solvers - recent developments and implications for lattice computations

    Get PDF
    We review the numerical analysis' understanding of Krylov subspace methods for solving (non-hermitian) systems of equations and discuss its implications for lattice gauge theory computations using the example of the Wilson fermion matrix. Our thesis is that mature methods like QMR, BiCGStab or restarted GMRES are close to optimal for the Wilson fermion matrix. Consequently, preconditioning appears to be the crucial issue for further improvements.Comment: 7 pages, LaTeX using espcrc2.sty, 2 figures, 9 eps-files, Talk presented at LATTICE96(algorithms), submitted to Nucl. Phys. B, Proc. Supp

    Short-recurrence Krylov subspace methods for the overlap Dirac operator at nonzero chemical potential

    Full text link
    The overlap operator in lattice QCD requires the computation of the sign function of a matrix, which is non-Hermitian in the presence of a quark chemical potential. In previous work we introduced an Arnoldi-based Krylov subspace approximation, which uses long recurrences. Even after the deflation of critical eigenvalues, the low efficiency of the method restricts its application to small lattices. Here we propose new short-recurrence methods which strongly enhance the efficiency of the computational method. Using rational approximations to the sign function we introduce two variants, based on the restarted Arnoldi process and on the two-sided Lanczos method, respectively, which become very efficient when combined with multishift solvers. Alternatively, in the variant based on the two-sided Lanczos method the sign function can be evaluated directly. We present numerical results which compare the efficiencies of a restarted Arnoldi-based method and the direct two-sided Lanczos approximation for various lattice sizes. We also show that our new methods gain substantially when combined with deflation.Comment: 14 pages, 4 figures; as published in Comput. Phys. Commun., modified data in Figs. 2,3 and 4 for improved implementation of FOM algorithm, extended discussion of the algorithmic cos

    Nonperturbatively Improved Hadron Spectroscopy Near the Continuum Limit

    Full text link
    We report the results of our quenched lattice simulations of the Wilson action with a nonperturbatively determined clover term at beta=6.2 and compare them with those of the standard Wilson action at the same beta value.Comment: 3 pages, including 3 figures; talk given at LATTICE9
    corecore