383 research outputs found

    Machara and Kodori Valleys (historical Apsilia) of NW Georgia in Caucasia in the 1st to 7th centuries AD

    Get PDF
    The dissertation concerns the historical Apsilia and offers a new theoretical approach to the nature of Apsilian material culture, which covers the period from the 1st to the early 7th centuries. Reasons are reflected in critical evaluation of the past scholarly contribution, where all problems have been analyzed. Three studies are conducted in this thesis that moves over two historical timescale Roman and early medieval periods. The author aims for her achievements and presents a background for new arguments and theories. First is a descriptive-analytical study of cremated minorities of Olginskoe cemetery. This attempts to reveal the full potential of acts, changes, and the purpose of individual choices, leading to distinctive practices and diversifying grave structures. They are patterns rarely considered in past studies of burial customs and drawing on this author’s new research, vision and imaginations. It sets out a new approach to the regional context of cremated minorities. New typo-chronology and relevant content of applied specifics (some are resistant to local origin) attempt to reconcile the components of the cultural definition (‘Tsebeldian culture’) of Apsilian material culture. They are unique components and a new context of hypothesis which can be tested in archaeological evidence. The other two issues derive from past scholarly contributions concerning the potential, perspectives, and functions of the geo-strategically significant NW region-Apsilia within Colchis/Lazica. It seeks to provide a broader understanding of the evolution of late Roman and early Byzantine Apsilian sites. This is a new approach to the study, which makes accessible the introduction of time-relative pieces of evidence and attempts to encompass existing knowledge about the studied material, but with a different perspective. It explores the possibility of new narratives by investigating broad features of trade and regional militarization that led to a global political establishment in Apsilia

    Single-particle imaging reveals intraflagellar transport–independent transport and accumulation of EB1 in \u3cem\u3eChlamydomonas\u3c/em\u3e flagella

    Get PDF
    The microtubule (MT) plus-end tracking protein EB1 is present at the tips of cilia and flagella; end-binding protein 1 (EB1) remains at the tip during flagellar shortening and in the absence of intraflagellar transport (IFT), the predominant protein transport system in flagella. To investigate how EB1 accumulates at the flagellar tip, we used in vivo imaging of fluorescent protein–tagged EB1 (EB1-FP) in Chlamydomonas reinhardtii. After photobleaching, the EB1 signal at the flagellar tip recovered within minutes, indicating an exchange with unbleached EB1 entering the flagella from the cell body. EB1 moved independent of IFT trains, and EB1-FP recovery did not require the IFT pathway. Single-particle imaging showed that EB1-FP is highly mobile along the flagellar shaft and displays a markedly reduced mobility near the flagellar tip. Individual EB1-FP particles dwelled for several seconds near the flagellar tip, suggesting the presence of stable EB1 binding sites. In simulations, the two distinct phases of EB1 mobility are sufficient to explain its accumulation at the tip. We propose that proteins uniformly distributed throughout the cytoplasm like EB1 accumulate locally by diffusion and capture; IFT, in contrast, might be required to transport proteins against cellular concentration gradients into or out of cilia

    Bírópecsét

    Get PDF

    „Porhajas."

    Get PDF

    Surface collective excitations in ultrafast pump-probe spectroscopy of metal nanoparticles

    Full text link
    The role of surface collective excitations in the electron relaxation in small metal particles is studied. It is shown that the dynamically screened electron-electron interaction in a nanoparticle contains a size-dependent correction induced by the surface. This leads to new channels of quasiparticle scattering accompanied by the emission of surface collective excitations. In noble-metal particles, the dipole collective excitations (surface plasmons) mediate a resonant scattering of d-holes to the conduction band. The role of this effect in the ultrafast optical dynamics of small nanoparticles is studied. With decreasing nanoparticle size, it leads to a strong change in the differential absorption lineshape and a strong frequency dependence of the relaxation near the surface plasmon resonance. The experimental implications of these results in ultrafast pump-probe spectroscopy are addressed. The size-dependence of conduction electron scattering rates is also discussed.Comment: 26 pages including 10 figures. Invited paper for Special Issue of Chemical Physics on "Electron Dynamics in Metals

    Signatures of the excitonic memory effects in four-wave mixing processes in cavity polaritons

    Full text link
    We report the signatures of the exciton correlation effects with finite memory time in frequency domain degenerate four-wave mixing (DFWM) in semiconductor microcavity. By utilizing the polarization selection rules, we discriminate instantaneous, mean field interactions between excitons with the same spins, long-living correlation due to the formation of biexciton state by excitons with opposite spins, and short-memory correlation effects in the continuum of unbound two-exciton states. The DFWM spectra give us the relative contributions of these effects and the upper limit for the time of the exciton-exciton correlation in the unbound two-exciton continuum. The obtained results reveal the basis of the cavity polariton scattering model for the DFWM processes in high-Q GaAs microcavity.Comment: 11 pages, 1 figur

    Ultrafast Spin Dynamics in Nickel

    Full text link
    The spin dynamics in Ni is studied by an exact diagonalization method on the ultrafast time scale. It is shown that the femtosecond relaxation of the magneto-optical response results from exchange interaction and spin-orbit coupling. Each of the two mechanisms affects the relaxation process differently. We find that the intrinsic spin dynamics occurs during about 10 fs while extrinsic effects such as laser-pulse duration and spectral width can slow down the observed dynamics considerably. Thus, our theory indicates that there is still room to accelerate the spin dynamics in experiments.Comment: 4 pages, Latex, 4 postscript figure

    Ultrafast Coulomb-induced dynamics of 2D magnetoexcitons

    Full text link
    We study theoretically the ultrafast nonlinear optical response of quantum well excitons in a perpendicular magnetic field. We show that for magnetoexcitons confined to the lowest Landau levels, the third-order four-wave-mixing (FWM) polarization is dominated by the exciton-exciton interaction effects. For repulsive interactions, we identify two regimes in the time-evolution of the optical polarization characterized by exponential and {\em power law} decay of the FWM signal. We describe these regimes by deriving an analytical solution for the memory kernel of the two-exciton wave-function in strong magnetic field. For strong exciton-exciton interactions, the decay of the FWM signal is governed by an antibound resonance with an interaction-dependent decay rate. For weak interactions, the continuum of exciton-exciton scattering states leads to a long tail of the time-integrated FWM signal for negative time delays, which is described by the product of a power law and a logarithmic factor. By combining this analytic solution with numerical calculations, we study the crossover between the exponential and non-exponential regimes as a function of magnetic field. For attractive exciton-exciton interaction, we show that the time-evolution of the FWM signal is dominated by the biexcitonic effects.Comment: 41 pages with 11 fig
    • …
    corecore