54 research outputs found

    (±)-Gossypol induces apoptosis and autophagy in head and neck carcinoma cell lines and inhibits the growth of transplanted salivary gland cancer cells in BALB/c mice

    Get PDF
    Racemic Gossypol [(±)-GOS], composed of both (-)-GOS and (+)-GOS, is a small BH3-mimetic polyphenol derived from cotton seeds. (±)-GOS has been employed and well tolerated by cancer patients. Head and neck carcinoma (HNC) represents one of the most fatal cancers worldwide, and a significant proportion of HNC expresses high levels of antiapoptotic Bcl-2 proteins. In this study, we demonstrate that (±)-GOS inhibits cell proliferation and induces apoptosis and autophagy of human pharynx, tongue, and salivary gland cancer cell lines and of mouse salivary gland cancer cells (SALTO). (±)-GOS was able to: (a) decrease the ErbB2 protein expression; (b) inhibit the phosphorylation of ERK1/2 and AKT; (c) stimulate p38 and JNK1/2 protein phosphorylation. (±)-GOS administration was safe in BALB/c mice and it reduced the growth of transplanted SALTO cells in vivo and prolonged mice median survival. Our results suggest the potential role of (±)-GOS as an antitumor agent in HNC patients

    Effects of Polyphenols on Oxidative Stress-Mediated Injury in Cardiomyocytes

    Get PDF
    Cardiovascular diseases are the main cause of mortality and morbidity in the world. Hypertension, ischemia/reperfusion, diabetes and anti-cancer drugs contribute to heart failure through oxidative and nitrosative stresses which cause cardiomyocytes nuclear and mitochondrial DNA damage, denaturation of intracellular proteins, lipid peroxidation and inflammation. Oxidative or nitrosative stress-mediated injury lead to cardiomyocytes apoptosis or necrosis. The reactive oxygen (ROS) and nitrogen species (RNS) concentration is dependent on their production and on the expression and activity of anti-oxidant enzymes. Polyphenols are a large group of natural compounds ubiquitously expressed in plants, and epidemiological studies have shown associations between a diet rich in polyphenols and the prevention of various ROS-mediated human diseases. Polyphenols reduce cardiomyocytes damage, necrosis, apoptosis, infarct size and improve cardiac function by decreasing oxidative stress-induced production of ROS or RNS. These effects are achieved by the ability of polyphenols to modulate the expression and activity of anti-oxidant enzymes and several signaling pathways involved in cells survival. This report reviews current knowledge on the potential anti-oxidative effects of polyphenols to control the cardiotoxicity induced by ROS and RNS stress

    Intuitive thinking predicts false memory formation due to a decrease in inhibitory efficiency

    Get PDF
    False memory formation is usually studied using the Deese-Roediger-McDermott paradigm (DRM), in which individuals incorrectly remember words that were not originally presented. In this paper, we systematically investigated how two modes of thinking (analytical vs. intuitive) can influence the tendency to create false memories. The increased propensity of intuitive thinkers to generate more false memories can be explained by one or both of the following hypotheses: a decrease in the inhibition of the lure words that come to mind, or an increased reliance on the familiarity heuristic to determine if the word has been previously studied. In two studies, we conducted tests of both recognition and recall using the DRM paradigm. Our observations indicate that a decrease in inhibitory efficiency plays a larger role in false memory formation compared to the use of the familiarity heuristic

    Effect of the BH3 Mimetic Polyphenol (–)-Gossypol (AT-101) on the in vitro and in vivo Growth of Malignant Mesothelioma

    Get PDF
    Malignant mesothelioma (MM) is a primary tumor arising from mesothelial cells. The survival of MM patients following traditional chemotherapy is poor, thus innovative treatments for MM are needed. (-)-gossypol (AT-101) is a BH3 mimetic compound which possesses anti-tumoral activity by targeting multiple signaling transduction pathways. Several clinical trials employing AT-101 have been performed and some of them are still ongoing. Accordingly, we investigated the in vitro effects of AT-101 on cell proliferation, cell cycle regulation, pro-survival signaling pathways, apoptosis and autophagy of human (MM-B1, H-Meso-1, and MM-F1) and mouse (#40a) MM cell lines. In addition, we explored the in vivo anti-tumor activities of AT-101 in a mouse model, in which the transplantation of MM cells induces ascites in the peritoneal space. AT-101 inhibited in vitro MM cells survival in a dose- and time-dependent manner and triggered autophagy, but the process was then blocked and was coincident with apoptosis activation. To confirm the effect of AT-101 in inducing the apoptosis of MM cells, MM cells were simultaneously treated with AT-101 and with the caspase inhibitor, Z-VAD-FMK. Z-VAD-FMK was able to significantly reduce the number of cells in the subG1 phase compared to the treatment with AT-101 alone. This result corroborates the induction of cell death by apoptosis following treatment with AT-101. Indeed, Western blotting results showed that AT-101 increases Bax/Bcl-2 ratio, modulates p53 expression, activates caspase 9 and the cleavage of PARP-1. In addition, the treatment with AT-101 was able to: (a) decrease the ErbB2 protein expression; (b) increase the EGFR protein expression; (c) affect the phosphorylation of ERK1/2, p38 and AKT; (d) stimulate JNK1/2 and c-jun phosphorylation. Our in vivo results showed that the intraperitoneal administration of AT-101 increased the median survival of C57BL/6 mice intraperitoneally transplanted with #40a cells and reduced the risk of developing tumors. Our findings may have important implications for the design of MM therapies by employing AT-101 as an anticancer agent in combination with standard therapies

    Basal oxidation of conserved cysteines modulates cardiac titin stiffness and dynamics

    Get PDF
    Titin, as the main protein responsible for the passive stiffness of the sarcomere, plays a key role in diastolic function and is a determinant factor in the etiology of heart disease. Titin stiffness depends on unfolding and folding transitions of immunoglobulin-like (Ig) domains of the I-band, and recent studies have shown that oxidative modifications of cryptic cysteines belonging to these Ig domains modulate their mechanical properties in vitro. However, the relevance of this mode of titin mechanical modulation in vivo remains largely unknown. Here, we describe the high evolutionary conservation of titin mechanical cysteines and show that they are remarkably oxidized in murine cardiac tissue. Mass spectrometry analyses indicate a similar landscape of basal oxidation in murine and human myocardium. Monte Carlo simulations illustrate how disulfides and S-thiolations on these cysteines increase the dynamics of the protein at physiological forces, while enabling load- and isoform-dependent regulation of titin stiffness. Our results demonstrate the role of conserved cysteines in the modulation of titin mechanical properties in vivo and point to potential redox-based pathomechanisms in heart disease.This work was supported by the Ministerio de Ciencia e Innovación grants BIO2014-54768-P, BIO2017-83640-P, RYC-2014-16604 to JAC and PGC2018-097019-B-I00 to JV, the Regional Government of Madrid grants S2018/NMT-4443 and PEJ16/MED/TL-1593 to JAC and the Instituto de Salud Carlos III (Fondo de Investigación Sanitaria grant PRB3 (PT17/0019/0003- ISCIII-SGEFI /ERDF, ProteoRed), and “la Caixa” Banking Foundation (project code HR17-00247) to JV. We acknowledge funding from the European Research Area Network on Cardiovascular Disease through grant MINOTAUR to SS (The Austrian Science Fund – FWF, I3301) and JAC (ISCIII-AC16/00045). The CNIC is supported by ISCIII, the Ministerio de Ciencia e Innovación and the Pro CNIC Foundation, and was a Severo Ochoa Center of Excellence (SEV-2015-0505). IMM was the recipient of a CNIC-ACCIONA Masters Fellowship and holds a fellowship from “La Caixa” Foundation (ID 100010434, fellowship code LCF/BQ/DR20/11790009). CSC is the recipient of an FPI-SO predoctoral fellowship BES-2016-076638. We thank Wolfgang A. Linke and Pablo García-Pavía for critical feedback. We are also thankful for the insights of three anonymous reviewers.S

    Biological and structural characterization of theMycobacterium smegmatis nitroreductase NfnB, and its rolein benzothiazinone resistance

    Get PDF
    Tuberculosis is still a leading cause of death in developing countries, for which there is an urgent need for new pharmacological agents. The synthesis of the novel antimycobacterial drug class of benzothiazinones (BTZs) and the identification of their cellular target as DprE1 (Rv3790), a component of the decaprenylphosphoryl-b-D-ribose 2'-epimerase complex, have been reported recently. Here, we describe the identification and characterization of a novel resistance mechanism to BTZ in Mycobacterium smegmatis. The overexpression of the nitroreductase NfnB leads to the inactivation of the drug by reduction of a critical nitro-group to an amino-group. The direct involvement of NfnB in the inactivation of the lead compound BTZ043 was demonstrated by enzymology, microbiological assays and gene knockout experiments. We also report the crystal structure of NfnB in complex with the essential cofactor flavin mononucleotide, and show that a common amino acid stretch between NfnB and DprE1 is likely to be essential for the interaction with BTZ. We performed docking analysis of NfnB-BTZ in order to understand their interaction and the mechanism of nitroreduction. Although Mycobacterium tuberculosis seems to lack nitroreductases able to inactivate these drugs, our findings are valuable for the design of new BTZ molecules, which may be more effective in vivo

    Health outcomes among HIV-positive Latinos initiating antiretroviral therapy in North America versus Central and South America

    Get PDF
    Introduction: Latinos living with HIV in the Americas share a common ethnic and cultural heritage. In North America, Latinos have a relatively high rate of new HIV infections but lower rates of engagement at all stages of the care continuum, whereas in Latin America antiretroviral therapy (ART) services continue to expand to meet treatment needs. In this analysis, we compare HIV treatment outcomes between Latinos receiving ART in North America versus Latin America. Methods: HIV-positive adults initiating ART at Caribbean, Central and South America Network for HIV (CCASAnet) sites were compared to Latino patients (based on country of origin or ethnic identity) starting treatment at North American AIDS Cohort Collaboration on Research and Design (NA-ACCORD) sites in the United States and Canada between 2000 and 2011. Cox proportional hazards models compared mortality, treatment interruption, antiretroviral regimen change, virologic failure and loss to follow-up between cohorts. Results: The study included 8400 CCASAnet and 2786 NA-ACCORD patients initiating ART. CCASAnet patients were younger (median 35 vs. 37 years), more likely to be female (27% vs. 20%) and had lower nadir CD4 count (median 148 vs. 195 cells/µL, p<0.001 for all). In multivariable analyses, CCASAnet patients had a higher risk of mortality after ART initiation (adjusted hazard ratio (AHR) 1.61; 95% confidence interval (CI): 1.32 to 1.96), particularly during the first year, but a lower hazard of treatment interruption (AHR: 0.46; 95% CI: 0.42 to 0.50), change to second-line ART (AHR: 0.56; 95% CI: 0.51 to 0.62) and virologic failure (AHR: 0.52; 95% CI: 0.48 to 0.57). Conclusions: HIV-positive Latinos initiating ART in Latin America have greater continuity of treatment but are at higher risk of death than Latinos in North America. Factors underlying these differences, such as HIV testing, linkage and access to care, warrant further investigation

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe
    corecore