43 research outputs found

    Building and sustaining Work Engagement – A participatory action intervention to increase Work Engagement in nursing staff

    Get PDF
    This study evaluated whether a participatory action research intervention with nursing staff on acute care older people NHS wards in the UK was effective for increasing work engagement. Mediation analyses between job resources, (social support, influence in decision-making), job demands, work-related needs (autonomy, competence, relatedness), and work engagement explored the presumed psychological mechanisms underlying the intervention. A nonrandomised, matched control group, pre-test, post-test design involved three intervention and five control wards. A significant decrease in relatedness, and a borderline significant decrease in competence, was observed in the intervention group compared to the control group, with no effect on work engagement (N=45). Work-related needs mediated between resources and work engagement, supporting the Job Demands-Resources model and Self-Determination Theory as an underlying explanatory theory. Intervention implementation was difficult, highlighting the need for participant and organisational readiness for change, and strong management support. This is the first known study to apply participatory techniques to increase work engagement in nursing staff and explore the underlying explanatory psychological mechanisms, offering a novel means of taking work engagement research forward. Crucially, it highlights the challenges involved in intervention research and the importance of including evaluations of intervention implementation alongside statistical evaluations to avoid erroneous conclusions

    Niche-breadth of freshwater macrophytes occurring in tropical southern African rivers predicts species global latitudinal range

    Get PDF
    The study tested the hypothesis that measurement, using multivariate Principal Components Analy-sis (PCA), of the niche-breadth of river macrophyte species in southern tropical Africa, may predicttheir larger-scale biogeographical range. Two measures of niche-breadth were calculated for 44 riverinemacrophyte species, from 20 families commonly occurring in Zambia, using an approach based on PCAordination with 16 bio-physico-chemical input variables. These included altitude, stream order, streamflow, pH, conductivity and soluble reactive phosphate concentration (SRP). In the absence of additionalchemical water quality data for Zambian rivers, invertebrate-based measures of general water qualitywere also used. These were benthic macroinvertebrate Average Score per Taxon (ASPT), and individualabundance of nine macroinvertebrate families with differing water quality tolerance, indicated by theirSensitivity Weightings within the Zambian Invertebrate Scoring System (ZISS). Macrophyte large-scalelatitudinal range was derived from world geopositional records held by online databases, and additionalrecords held by the authors. The two niche-breadth metrics divided the species into narrow-niche andintermediate/broad-niche categories, showing significant variation (from one or both of correlation andANOVA test outcomes) in altitude, stream flow, conductivity, SRP, pH and ASPT, but not stream order.Macrophyte alpha-diversity (as a measure of number of individual niches co-existing per habitat) showedno significant relationship with individual species niche-breadth. Narrow-niche species included a higherproportion of Afrotropical endemics than did species with broader niche size. There were significant pre-dictive relationships between macrophyte niche-breadth and latitudinal range of the target species atglobal and Afrotropical scales, but not for the Neotropics.Fil: Kennedy, Michael. University Of Aberdeen; Reino UnidoFil: Lang, Pauline. University of Glasgow; Reino UnidoFil: Tapia Grimaldo, Julissa. University of Glasgow; Reino UnidoFil: Varandas Martins, Sara. University of Glasgow; Reino UnidoFil: Bruce, Alannah. University of Glasgow; Reino UnidoFil: Moore, Isabel. University of Glasgow; Reino UnidoFil: Taubert, Rebeca. University of Glasgow; Reino UnidoFil: Macleod-Nolan, Chantal. University of Glasgow; Reino UnidoFil: McWaters, Stephanie. University of Glasgow; Reino UnidoFil: Briggs, John. University of Glasgow; Reino UnidoFil: Lowe, Steve. University of Glasgow; Reino UnidoFil: Saili, Kochelani. University Of Zambia;Fil: SICHINGABULA, Henry. University Of Zambia;Fil: Dallas, Helen. Nelson Mandela Metropolitan University, Sudafrica; SudáfricaFil: Morrison, Sean. University of Glasgow; Reino UnidoFil: Franceschini, Maria Celeste. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Nordeste. Centro de Ecología Aplicada del Litoral. Universidad Nacional del Nordeste. Centro de Ecología Aplicada del Litoral; ArgentinaFil: Willems, Frank. The Kasanka Trust; ZambiaFil: Bottino, Flavia. Universidad Federal de San Carlos; BrasilFil: MURPHY Kevin. University of Glasgow; Reino Unid

    Characterizing the Optical Variability of Bright Blazars: Variability-based Selection of Fermi Active Galactic Nuclei

    Get PDF
    We investigate the use of optical photometric variability to select and identify blazars in large-scale time-domain surveys, in part to aid in the identification of blazar counterparts to the ∼30% of γ -ray sources in the Fermi 2FGL catalog still lacking reliable associations. Using data from the optical LINEAR asteroid survey, we characterize the optical variability of blazars by fitting a damped random walk model to individual light curves with two main model parameters, the characteristic timescales of variability τ , and driving amplitudes on short timescales σ . Imposing cuts on minimum τ and σ allows for blazar selection with high efficiency E and completeness C. To test the efficacy of this approach, we apply this method to optically variable LINEAR objects that fall within the several arcminute error ellipses of γ -ray sources in the Fermi 2FGL catalog. Despite the extreme stellar contamination at the shallow depth of the LINEAR survey, we are able to recover previously associated optical counterparts to Fermi active galactic nuclei with E ≥ 88% and C = 88% in Fermi 95% confidence error ellipses having semimajor axis r < 8'. We find that the suggested radio counterpart to Fermi source 2FGL J1649.6+5238 has optical variability consistent with other γ -ray blazars and is likely to be the γ -ray source. Our results suggest that the variability of the non-thermal jet emission in blazars is stochastic in nature, with unique variability properties due to the effects of relativistic beaming. After correcting for beaming, we estimate that the characteristic timescale of blazar variability is ∼3 years in the rest frame of the jet, in contrast with the ∼320 day disk flux timescale observed in quasars. The variability-based selection method presented will be useful for blazar identification in time-domain optical surveys and is also a probe of jet physics

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency-Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research.Peer reviewe

    Using national electronic health records for pandemic preparedness: validation of a parsimonious model for predicting excess deaths among those with COVID-19–a data-driven retrospective cohort study

    No full text
    \ua9 2022, The Royal Society of Medicine. Objectives: To use national, pre- and post-pandemic electronic health records (EHR) to develop and validate a scenario-based model incorporating baseline mortality risk, infection rate (IR) and relative risk (RR) of death for prediction of excess deaths. Design: An EHR-based, retrospective cohort study. Setting: Linked EHR in Clinical Practice Research Datalink (CPRD); and linked EHR and COVID-19 data in England provided in NHS Digital Trusted Research Environment (TRE). Participants: In the development (CPRD) and validation (TRE) cohorts, we included 3.8 million and 35.1 million individuals aged ≥30 years, respectively. Main outcome measures: One-year all-cause excess deaths related to COVID-19 from March 2020 to March 2021. Results: From 1 March 2020 to 1 March 2021, there were 127,020 observed excess deaths. Observed RR was 4.34% (95% CI, 4.31–4.38) and IR was 6.27% (95% CI, 6.26–6.28). In the validation cohort, predicted one-year excess deaths were 100,338 compared with the observed 127,020 deaths with a ratio of predicted to observed excess deaths of 0.79. Conclusions: We show that a simple, parsimonious model incorporating baseline mortality risk, one-year IR and RR of the pandemic can be used for scenario-based prediction of excess deaths in the early stages of a pandemic. Our analyses show that EHR could inform pandemic planning and surveillance, despite limited use in emergency preparedness to date. Although infection dynamics are important in the prediction of mortality, future models should take greater account of underlying conditions
    corecore