163 research outputs found

    The gene for trypsin inhibitor CMe is regulated in trans by the lys 3a locus in the endosperm of barley (Hordeum vulgare L.)

    Full text link
    A cDNA encoding trypsin inhibitor CMe from barley endosperm has been cloned and characterized. The longest open reading frame of the cloned cDNA codes for a typical signal peptide of 24 residues followed by a sequence which is identical to the known amino acid sequence of the inhibitor, except for an Ile/Leu substitution at position 59. Southern blot analysis of wheat-barley addition lines has shown that chromosome 3H of barley carries the gene for CMe. This protein is present at less than 2%–3% of the wild-type amount in the mature endosperm of the mutant Risø 1508 with respect to Bomi barley, from which it has been derived, and the corresponding steady state levels of the CMe mRNA are about I%. One or two copies of the CMe gene (synonym Itc1) per haploid genome have been estimated both in the wild type and in the mutant, and DNA restriction patterns are identical in both stocks, so neither a change in copy number nor a major rearrangement of the structural gene account for the markedly decreased expression. The mutation at the lys 3a locus in Risø 1508 has been previously mapped in chromosome 7 (synonym 5H). A single dose of the wild-type allele at this locus (Lys 3a) restores the expression of gene CMe (allele CMe-1) in chromosome 3H to normal levels

    Unilateral aplasia of both cruciate ligaments

    Get PDF
    Aplasia of both cruciate ligaments is a rare congenital disorder. A 28-year-old male presented with pain and the feeling of instability of his right knee after trauma. The provided MRI and previous arthroscopy reports did not indicate any abnormalities except cruciate ligament tears. He was referred to us for reconstruction of both cruciate ligaments. The patient again underwent arthroscopy which revealed a hypoplasia of the medial trochlea and an extremely narrow intercondylar notch. The tibia revealed a missing anterior cruciate ligament (ACL) footprint and a single bump with a complete coverage with articular cartilage. There was no room for an ACL graft. A posterior cruciate ligament could not be identified. The procedure was ended since a ligament reconstruction did not appear reasonable. A significant notch plasty if not a partial resection of the condyles would have been necessary to implant a ligament graft. It is most likely that this would not lead to good knee stability. If the surgeon would have retrieved the contralateral hamstrings at the beginning of the planned ligament reconstruction a significant damage would have occurred to the patient. Even in seemingly clear diagnostic findings the arthroscopic surgeon should take this rare abdnormality into consideration and be familiar with the respective radiological findings. We refer the abnormal finding of only one tibial spine to as the "dromedar-sign" as opposed to the two (medial and a lateral) tibial spines in a normal knee. This may be used as a hint for aplasia of the cruciate ligaments

    Genetics of CM-proteins (A-hordeins) in barley

    Full text link
    The CM-proteins, which are the main components of the A-hordeins, include four previously described proteins (CMa-1, CMb-1, CMc-1, CMd-1), plus a new one, CMe-1, which has been tentatively included in this group on the basis of its solubility properties and electrophoretic mobility. The variability of the five proteins has been investigated among 38 Hordeum vulgare cultivars and 17 H. spontaneum accessions. Proteins CMa-1, CMc-1 and CMd-1 were invariant within the cultivated species; CMd was also invariant in the wild one. The inheritance of variants CMb-1/CMb-2 and CMe-1/CMe-2,2 was studied in a cross H. spontaneum x H. vulgare. The first two proteins were inherited as codominantly expressed allelic variations of a single mendelian gene. Components CMe-2,2 were jointly inherited and codominantly expressed with respect to CMe-1. Gene CMb and gene(s) CMe were found to be unlinked. The chromosomal locations of genes encoding CM-proteins were investigated using wheat-barley addition lines. Genes CMa and CMc were associated with chromosome 1, and genes CMb and CMd with chromosome 4. These gene locations further support the proposed homoeology of chromosomes 1 and 4 of barley with chromosomes groups 7 and 4 of wheat, respectively. Gene(s) CMe has been assigned to chromosome 3 of barley. The accumulation of protein CMe-1 is totally blocked in the high lysine mutant Riso 1508 and partially so in the high lysine barley Hiproly

    Clustering of Multiple Energy Balance-Related Behaviors in School Children and Its Association with Overweight and Obesity—WHO European Childhood Obesity Surveillance Initiative (COSI 2015–2017)

    Get PDF
    It is unclear how dietary, physical activity and sedentary behaviors co-occur in school-aged children. We investigated the clustering of energy balance-related behaviors and whether the identified clusters were associated with weight status. Participants were 6- to 9-year-old children (n = 63,215, 49.9% girls) from 19 countries participating in the fourth round (2015/2017) of the World Health Organization (WHO) European Childhood Obesity Surveillance Initiative. Energy balance-related behaviors were parentally reported. Weight and height were objectively measured. We performed cluster analysis separately per group of countries (North Europe, East Europe, South Europe/Mediterranean countries and West-Central Asia). Seven clusters were identified in each group. Healthier clusters were common across groups. The pattern of distribution of healthy and unhealthy behaviors within each cluster was group specific. Associations between the clustering of energy balance-related behaviors and weight status varied per group. In South Europe/Mediterranean countries and East Europe, all or most of the cluster solutions were associated with higher risk of overweight/obesity when compared with the cluster 'Physically active and healthy diet'. Few or no associations were observed in North Europe and West-Central Asia, respectively. These findings support the hypothesis that unfavorable weight status is associated with a particular combination of energy balance-related behavior patterns, but only in some groups of countries

    Methodology and implementation of the WHO European Childhood Obesity Surveillance Initiative (COSI)

    Get PDF
    Establishment of the WHO European Childhood Obesity Surveillance Initiative (COSI) has resulted in a surveillance system which provides regular, reliable, timely, and accurate data on children's weight status—through standardized measurement of bodyweight and height—in the WHO European Region. Additional data on dietary intake, physical activity, sedentary behavior, family background, and school environments are collected in several countries. In total, 45 countries in the European Region have participated in COSI. The first five data collection rounds, between 2007 and 2021, yielded measured anthropometric data on over 1.3 million children. In COSI, data are collected according to a common protocol, using standardized instruments and procedures. The systematic collection and analysis of these data enables intercountry comparisons and reveals differences in the prevalence of childhood thinness, overweight, normal weight, and obesity between and within populations. Furthermore, it facilitates investigation of the relationship between overweight, obesity, and potential risk or protective factors and improves the understanding of the development of overweight and obesity in European primary-school children in order to support appropriate and effective policy responses

    Physical Activity, Screen Time, and Sleep Duration of Children Aged 6-9 Years in 25 Countries: An Analysis within the WHO European Childhood Obesity Surveillance Initiative (COSI) 2015-2017

    Get PDF
    Background: Children are becoming less physically active as opportunities for safe active play, recreational activities, and active transport decrease. At the same time, sedentary screen-based activities both during school and leisure time are increasing. Objectives: This study aimed to evaluate physical activity (PA), screen time, and sleep duration of girls and boys aged 6–9 years in Europe using data from the WHO European Childhood Obesity Surveillance Initiative (COSI). Method: The fourth COSI data collection round was conducted in 2015–2017, using a standardized protocol that included a family form completed by parents with specific questions about their children’s PA, screen time, and sleep duration. Results: Nationally representative data from 25 countries was included and information on the PA behaviour, screen time, and sleep duration of 150,651 children was analysed. Pooled analysis showed that: 79.4% were actively playing for >1 h each day, 53.9% were not members of a sport or dancing club, 50.0% walked or cycled to school each day, 60.2% engaged in screen time for 1 h/day, 8.2–85.6% were not members of a sport or dancing club, 17.7–94.0% walked or cycled to school each day, 32.3–80.0% engaged in screen time for <2 h/day, and 50.0–95.8% slept for 9–11 h/night. Conclusions: The prevalence of engagement in PA and the achievement of healthy screen time and sleep duration are heterogenous across the region. Policymakers and other stakeholders, including school administrators and parents, should increase opportunities for young people to participate in daily PA as well as explore solutions to address excessive screen time and short sleep duration to improve the overall physical and mental health and well-being of children.The authors gratefully acknowledge support from a grant from the Russian Government in the context of the WHO European Office for the Prevention and Control of NCDs. Data collection in the following countries was made possible through funding. Albania: WHO through the Joint Programme on Children, Food Security and Nutrition “Reducing Malnutrition in Children” (the Millennium Development Goals Achievement Fund) and the Institute of Public Health; Bulgaria: Ministry of Health, National Centre of Public Health and Analyses, WHO Regional Office for Europe; Croatia: Ministry of Health, Croatian Institute of Public Health and WHO Regional Office for Europe; Czechia: grants AZV MZČR 17–31670 A and MZČR – RVO EÚ 00023761; Denmark: Danish Ministry of Health; Estonia: Ministry of Social Affairs, Ministry of Education and Research (IUT 42–2), WHO Country Office, and National Institute for Health Development; France: Sante Publique France, the French Agency for Public Health; Georgia: WHO; Ireland: Health Service Executive; Italy: Ministry of Health and Italian National Institute of Health; Kazakhstan: Ministry of Health of the Republic of Kazakhstan and WHO Country Office; Kyrgyzstan: WHO; Latvia: Ministry of Health, Centre for Disease Prevention and Control; Lithuania: Science Foundation of Lithuanian University of Health Sciences and Lithuanian Science Council and WHO; Malta: Ministry of Health; Montenegro: WHO and Institute of Public Health of Montenegro; Poland: National Health Programme, Ministry of Health; Portugal: Ministry of Health Institutions, the National Institute of Health, Directorate General of Health, Regional Health Directorates and the kind technical support from the Center for Studies and Research on Social Dynamics and Health (CEIDSS); Romania: Ministry of Health; San Marino: Health Ministry, Educational Ministry, Social Security Institute and Health Authority; Spain: Spanish Agency for Food Safety and Nutrition (AESAN); Turkmenistan: WHO Country Office in Turkmenistan and Ministry of Health; Turkey: Turkish Ministry of Health and the World Bank

    Parental Perceptions of Children’s Weight Status in 22 Countries: The WHO European Childhood Obesity Surveillance Initiative: COSI 2015/2017

    Get PDF
    Introduction: Parents can act as important agents of change and support for healthy childhood growth and development. Studies have found that parents may not be able to accurately perceive their child’s weight status. The purpose of this study was to measure parental perceptions of their child’s weight status and to identify predictors of potential parental misperceptions. Methods: We used data from the World Health Organization (WHO) European Childhood Obesity Surveillance Initiative and 22 countries. Parents were asked to identify their perceptions of their children’s weight status as “underweight,” “normal weight,” “a little overweight,” or “extremely overweight.” We categorized children’s (6–9 years; n = 124,296) body mass index (BMI) as BMI-for-age Z-scores based on the 2007 WHO-recommended growth references. For each country included in the analysis and pooled estimates (country level), we calculated the distribution of children according to the WHO weight status classification, distribution by parental perception of child’s weight status, percentages of accurate, overestimating, or underestimating perceptions, misclassification levels, and predictors of parental misperceptions using a multilevel logistic regression analysis that included only children with overweight (including obesity). Statistical analyses were performed using Stata version 15 1. Results: Overall, 64.1% of parents categorized their child’s weight status accurately relative to the WHO growth charts. However, parents were more likely to underestimate their child’s weight if the child had overweight (82.3%) or obesity (93.8%). Parents were more likely to underestimate their child’s weight if the child was male (adjusted OR [adjOR]: 1.41; 95% confidence intervals [CI]: 1.28–1.55); the parent had a lower educational level (adjOR: 1.41; 95% CI: 1.26–1.57); the father was asked rather than the mother (adjOR: 1.14; 95% CI: 0.98–1.33); and the family lived in a rural area (adjOR: 1.10; 95% CI: 0.99–1.24). Overall, parents’ BMI was not strongly associated with the underestimation of children’s weight status, but there was a stronger association in some countries. Discussion/Conclusion: Our study supplements the current literature on factors that influence parental perceptions of their child’s weight status. Public health interventions aimed at promoting healthy childhood growth and development should consider parents’ knowledge and perceptions, as well as the sociocultural contexts in which children and families live.The authors gratefully acknowledge support from a grant from the Russian Government in the context of the WHO European Office for the Prevention and Control of NCDs. Data collection in the countries was made possible through funding by: Albania: World Health Organization through the Joint Programme on Children, Food Security and Nutrition “Reducing Malnutrition in Children,” funded by the Millennium Development Goals Achievement Fund, and the Institute of Public Health; Bulgaria: Ministry of Health, National Center of Public Health and Analyses, World Health Organization Regional Office for Europe; Croatia: Ministry of Health, Croatian Institute of Public Health and World Health Organization Regional Office for Europe; Czechia: Grants AZV MZČR 17-31670 A and MZČR – RVO EÚ 00023761; Denmark: Danish Ministry of Health; France: French Public Health Agency; Georgia: World Health Organization; Ireland: Health Service Executive; Italy: Ministry of Health; Istituto Superiore di sanità (National Institute of Health); Kazakhstan: Ministry of Health of the Republic of Kazakhstan and World Health Organization Country Office; Latvia: n/a; Lithuania: Science Foundation of Lithuanian University of Health Sciences and Lithuanian Science Council and World Health Organization; Malta: Ministry of Health; Montenegro: World Health Organization and Institute of Public Health of Montenegro; Poland: National Health Programme, Ministry of Health; Portugal: Ministry of Health Institutions, the National Institute of Health, Directorate General of Health, Regional Health Directorates and the kind technical support of Center for Studies and Research on Social Dynamics and Health (CEIDSS); Romania: Ministry of Health; Russia (Moscow): n/a; San Marino: Health Ministry; Educational Ministry; Social Security Institute; the Health Authority; Spain: Spanish Agency for Food Safety and Nutrition (AESAN); Tajikistan: World Health Organization Country Office in Tajikistan and Ministry of Health and Social Protection; and Turkmenistan: World Health Organization Country Office in Turkmenistan and Ministry of Health. The authors alone are responsible for the views expressed in this article and they do not necessarily represent the views, decisions, or policies of the institutions with which they are affiliated.info:eu-repo/semantics/publishedVersio

    Diminishing benefits of urban living for children and adolescents’ growth and development

    Get PDF
    Optimal growth and development in childhood and adolescence is crucial for lifelong health and well-being1–6. Here we used data from 2,325 population-based studies, with measurements of height and weight from 71 million participants, to report the height and body-mass index (BMI) of children and adolescents aged 5–19 years on the basis of rural and urban place of residence in 200 countries and territories from 1990 to 2020. In 1990, children and adolescents residing in cities were taller than their rural counterparts in all but a few high-income&nbsp;countries. By 2020, the urban height advantage became smaller in most countries, and in many high-income western countries it reversed into a small urban-based disadvantage. The exception was for boys in most countries in sub-Saharan Africa and in some countries in Oceania, south Asia and the region of central Asia, Middle East and north Africa. In these countries, successive cohorts of boys from rural places either did not gain height or possibly became shorter, and hence fell further behind their urban peers. The difference between the age-standardized mean BMI of children in urban and rural areas was &lt;1.1 kg m–2 in the vast majority of&nbsp;countries. Within this small range, BMI increased slightly more in cities than in rural areas, except in south Asia, sub-Saharan Africa and some countries in central and eastern Europe. Our results show that in much of the world, the growth and developmental advantages of living in cities have diminished in the twenty-first century, whereas in much of sub-Saharan Africa they have amplified

    Rising rural body-mass index is the main driver of the global obesity epidemic in adults

    Get PDF
    Body-mass index (BMI) has increased steadily in most countries in parallel with a rise in the proportion of the population who live in cities(.)(1,2) This has led to a widely reported view that urbanization is one of the most important drivers of the global rise in obesity(3-6). Here we use 2,009 population-based studies, with measurements of height and weight in more than 112 million adults, to report national, regional and global trends in mean BMI segregated by place of residence (a rural or urban area) from 1985 to 2017. We show that, contrary to the dominant paradigm, more than 55% of the global rise in mean BMI from 1985 to 2017-and more than 80% in some low- and middle-income regions-was due to increases in BMI in rural areas. This large contribution stems from the fact that, with the exception of women in sub-Saharan Africa, BMI is increasing at the same rate or faster in rural areas than in cities in low- and middle-income regions. These trends have in turn resulted in a closing-and in some countries reversal-of the gap in BMI between urban and rural areas in low- and middle-income countries, especially for women. In high-income and industrialized countries, we noted a persistently higher rural BMI, especially for women. There is an urgent need for an integrated approach to rural nutrition that enhances financial and physical access to healthy foods, to avoid replacing the rural undernutrition disadvantage in poor countries with a more general malnutrition disadvantage that entails excessive consumption of low-quality calories.Peer reviewe
    corecore