14 research outputs found

    Artificial microRNAs and synthetic trans-acting small interfering RNAs interfere with viroid infection

    Full text link
    [EN] Artificial microRNAs (amiRNAs) and synthetic trans-acting small interfering RNAs (syn-tasiRNAs) are two classes of artificial small RNAs (sRNAs) engineered to silence endogenous transcripts as well as viral RNAs in plants. Here, we explore the possibility of using amiRNAs and syn-tasiRNAs to specifically interfere with infections by viroids, small (250–400-nucleotide) non-coding circular RNAs with compact secondary structure infecting a wide range of plant species. The combined use of recent highthroughput methods for artificial sRNA construct generation and the Potato spindle tuber viroid (PSTVd)–Nicotiana benthamiana pathosystem allowed for the simple and time-effective screening of multiple artificial sRNAs targeting sites distributed along PSTVd RNAs of (1) or (–) polarity. The majority of amiRNAs were highly active in agroinfiltrated leaves when co-expressed with an infectious PSTVd transcript, as were syn-tasiRNAs derived from a construct including the five most effective amiRNA sequences. A comparative analysis showed that the effects of the most effective amiRNA and of the syn-tasiRNAs were similar in agroinfiltrated leaves, as well as in upper non-agroinfiltrated leaves in which PSTVd accumulation was significantly delayed. These results suggest that amiRNAs and syntasiRNAs can be used effectively to control viroid infections in plants.We thank Veronica Aragones, Teresa Cordero, Arnau Puigvert and Cristina Beceiro for invaluable technical assistance. This study was supported by grants BIO2014-54269-R and AGL2013-49919-EXP from the Ministerio de Economia y Competitividad (MINECO, Spain). Alberto Carbonell was supported by an Individual Fellowship from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska Curie grant agreement No. 655841.Carbonell Olivares, A.; Daros Arnau, JA. (2016). Artificial microRNAs and synthetic trans-acting small interfering RNAs interfere with viroid infection. Molecular Plant Pathology. 18(5):746-753. https://doi.org/10.1111/mpp.12529S74675318

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    CLB19, a pentatricopeptide repeat protein required for editing ofrpoAandclpPchloroplast transcripts

    No full text
    onsejo Nacional de Ciencia y Tecnologia 31791-N Direccion General de Asuntos para el Personal Academico-UNAM IN218007 French Ministry of Education and Research French Australian ST (FAST) FR060030 Australian Research Council CE0561495International audienceRNA editing changes the sequence of many transcripts in plant organelles, but little is known about the molecular mechanisms determining the specificity of the process. In this study, we have characterized CLB19 (also known as PDE247), a gene that is required for editing of two distinct chloroplast transcripts, rpoA and clpP. Loss-of-function clb19 mutants present a yellow phenotype with impaired chloroplast development and early seedling lethality under greenhouse conditions. Transcript patterns are profoundly affected in the mutant plants, with a pattern entirely consistent with a defect in activity of the plastid-encoded RNA polymerase. CLB19 encodes a pentatricopeptide repeat protein similar to the editing specificity factors CRR4 and CRR21, but, unlike them, is implicated in editing of two target sites
    corecore