29 research outputs found

    Search for pair-produced resonances decaying to quark pairs in proton-proton collisions at root s=13 TeV

    Get PDF
    A general search for the pair production of resonances, each decaying to two quarks, is reported. The search is conducted separately for heavier resonances (masses above 400 GeV), where each of the four final-state quarks generates a hadronic jet resulting in a four-jet signature, and for lighter resonances (masses between 80 and 400 GeV), where the pair of quarks from each resonance is collimated and reconstructed as a single jet resulting in a two-jet signature. In addition, a b-tagged selection is applied to target resonances with a bottom quark in the final state. The analysis uses data collected with the CMS detector at the CERN LHC, corresponding to an integrated luminosity of 35.9 fb(-1), from proton-proton collisions at a center-of-mass energy of 13 TeV. The mass spectra are analyzed for the presence of new resonances, and are found to be consistent with standard model expectations. The results are interpreted in the framework of R-parity-violating supersymmetry assuming the pair production of scalar top quarks decaying via the hadronic coupling lambda ''(312) or lambda ''(323) and upper limits on the cross section as a function of the top squark mass are set. These results probe a wider range of masses than previously explored at the LHC, and extend the top squark mass limits in the (t) over tilde -> qq' scenario.Peer reviewe

    Erratum: Search for Resonant and Nonresonant Higgs Boson Pair Production in the bb[over ¯]τ^{+}τ^{-} Decay Channel in pp Collisions at sqrt[s]=13  TeV with the ATLAS Detector [Phys. Rev. Lett. 121, 191801 (2018)]

    Get PDF

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report

    DFT-Based Insights into Pd–Zn Cooperative Effects in Oxidative Addition and Reductive Elimination Processes Relevant to Negishi Cross-Couplings

    No full text
    The individual steps of a model Pd-catalyzed Negishi coupling between vinyl bromide and MeZnClS<sub>2</sub> (S = THF), using Pd­(PMe<sub>3</sub>)<sub>2</sub> as catalyst, have been examined with the aid of DFT computations in THF solution with the B97D functional to gain further insight into the role of Pd–Zn interactions on the oxidative addition and reductive elimination steps. Comparisons between such processes taking place on monometallic Pd complexes and on bimetallic Pd–Zn complexes reveal a detrimental effect of Pd–Zn interactions in oxidative addition, whereas reductive elimination is favored by Pd–Zn cooperativity. Additionally, a cis transmetalation pathway has been characterized that complements previous studies involving trans complexes

    Erratum: “First Search for Gravitational Waves from Known Pulsars with Advanced LIGO” (2017, ApJ, 839, 12)

    No full text
    International audienc

    Measurement of the cross section for tt \mathrm{t}\overline{\mathrm{t}} production with additional jets and b jets in pp collisions at s \sqrt{s} = 13 TeV

    No full text
    Measurements of the cross section for the production of top quark pairs in association with a pair of jets from bottom quarks (σttbb) \left({\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{b}\overline{\mathrm{b}}}\right) and in association with a pair of jets from quarks of any flavor or gluons (σttjj) \left({\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{jj}}\right) and their ratio are presented. The data were collected in proton-proton collisions at a center-of-mass energy of 13 TeV by the CMS experiment at the LHC in 2016 and correspond to an integrated luminosity of 35.9 fb−1. The measurements are performed in a fiducial phase space and extrapolated to the full phase space, separately for the dilepton and lepton+jets channels, where lepton corresponds to either an electron or a muon. The results of the measurements in the fiducial phase space for the dilepton and lepton+jets channels, respectively, are σttjj {\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{jj}} = 2.36±0.02 (stat)±0.20 (syst) pb and 31.0±0.2 (stat)±2.9 (syst) pb, and for the cross section ratio 0.017 ± 0.001 (stat) ± 0.001 (syst) and 0.020 ± 0.001 (stat) ± 0.001 (syst). The values of σttbb {\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{b}\overline{\mathrm{b}}} are determined from the product of the σttjj {\sigma}_{\mathrm{t}\overline{\mathrm{t}}\mathrm{jj}} and the cross section ratio, obtaining, respectively, 0.040±0.002 (stat)±0.005 (syst) pb and 0.62±0.03 (stat)±0.07 (syst) pb. These measurements are the most precise to date and are consistent, within the uncertainties, with the standard model expectations obtained using a matrix element calculation at next-to-leading order in quantum chromodynamics matched to a parton shower
    corecore