84 research outputs found

    Interplay between local structure and electronic properties on CuO under pressure

    Get PDF
    The electronic and local structural properties of CuO under pressure have been investigated by means of X-ray absorption spectroscopy (XAS) at Cu K edge and ab-initio calculations, up to 17 GPa. The crystal structure of CuO consists of Cu motifs within CuO4_4 square planar units and two elongated apical Cu-O bonds. The CuO4_4 square planar units are stable in the studied pressure range, with Cu-O distances that are approximately constant up to 5 GPa, and then decrease slightly up to 17 GPa. In contrast, the elongated Cu-O apical distances decrease continuously with pressure in the studied range. An anomalous increase of the mean square relative displacement (EXAFS Debye Waller, \sigma2^2) of the elongated Cu-O path is observed from 5 GPa up to 13 GPa, when a drastic reduction takes place in \sigma2^2. This is interpreted in terms of local dynamic disorder along the apical Cu-O path. At higher pressures (P>13 GPa), the local structure of Cu2+^{2+} changes from a 4-fold square planar to a 4+2 Jahn-Teller distorted octahedral ion. We interpret these results in terms of the tendency of the Cu2+^{2+} ion to form favorable interactions with the apical O atoms. Also, the decrease in Cu-O apical distance caused by compression softens the normal mode associated with the out-of-plane Cu movement. CuO is predicted to have an anomalous rise in permittivity with pressure as well as modest piezoelectricity in the 5-13 GPa pressure range. In addition, the near edge features in our XAS experiment show a discontinuity and a change of tendency at 5 GPa. For P < 5 GPa the evolution of the edge shoulder is ascribed to purely electronic effects which also affect the charge transfer integral. This is linked to a charge migration from the Cu to O, but also to an increase of the energy band gap, which show a change of tendency occurring also at 5 GPa

    Structural, vibrational and electronic properties of alpha'-Ga2S3 under compression

    Full text link
    [EN] We report a joint experimental and theoretical study of the low-pressure phase of ¿¿-Ga2S3 under compression. Theoretical ab initio calculations have been compared to X-ray diffraction and Raman scattering measurements under high pressure carried out up to 17.5 and 16.1 GPa, respectively. In addition, we report Raman scattering measurements of ¿¿-Ga2S3 at high temperature that have allowed us to study its anharmonic properties. To understand better the compression of this compound, we have evaluated the topological properties of the electron density, the electron localization function, and the electronic properties as a function of pressure. As a result, we shed light on the role of the Ga¿S bonds, the van der Waals interactions inside the channels of the crystalline structure, and the single and double lone electron pairs of the sulphur atoms in the anisotropic compression of ¿¿-Ga2S3. We found that the structural channels are responsible for the anisotropic properties of ¿¿-Ga2S3 and the A¿(6) phonon, known as the breathing mode and associated with these channels, exhibits the highest anharmonic behaviour. Finally, we report calculations of the electronic band structure of ¿¿-Ga2S3 at different pressures and find a nonlinear pressure behaviour of the direct band gap and a pressure-induced direct-to-indirect band gap crossover that is similar to the behaviour previously reported in other ordered-vacancy compounds, including ß-Ga2Se3. The importance of the single and, more specially, the double lone electron pairs of sulphur in the pressure dependence of the topmost valence band of ¿¿-Ga2S3 is stressed.The authors thank the financial support from the Spanish Research Agency (AEI) under projects MALTA Consolider Team network (RED2018-102612-T) and projects MAT2016-75586-C4-2/3-P, FIS2017-83295-P, PID2019-106383GB-42/43, and PGC2018-097520-A-100, as well as from Generalitat Valenciana under Project PROMETEO/2018/123 (EFIMAT). A. M. and P. R.-H. acknowledge computing time provided by Red Espanola de Supercomputacion (RES) and MALTA-Cluster and E. L. D. S. acknowledges Marie Sklodowska-Curie Grant No. 785789-COMEX from the European Union's Horizon 2020 research and innovation program. J. A. S. also wants to thank the Ramon y Cajal fellowship (RYC-2015-17482) for financial support. We also thank the ALBA synchrotron light source for funded experiment 2017022088 at the MSPD-BL04 beamline.Gallego-Parra, S.; Vilaplana Cerda, RI.; Gomis, O.; Lora Da Silva, E.; Otero-De-La-Roza, A.; Rodríguez-Hernández, P.; Muñoz, A.... (2021). Structural, vibrational and electronic properties of alpha'-Ga2S3 under compression. Physical Chemistry Chemical Physics. 23(11):6841-6862. https://doi.org/10.1039/d0cp06417cS68416862231

    The Generation R Study: design and cohort update 2010

    Get PDF
    The Generation R Study is a population-based prospective cohort study from fetal life until young adulthood. The study is designed to identify early environmental and genetic causes of normal and abnormal growth, development and health during fetal life, childhood and adulthood. The study focuses on four primary areas of research: (1) growth and physical development; (2) behavioural and cognitive development; (3) diseases in childhood; and (4) health and healthcare for pregnant women and children. In total, 9,778 mothers with a delivery date from April 2002 until January 2006 were enrolled in the study. General follow-up rates until the age of 4 years exceed 75%. Data collection in mothers, fathers and preschool children included questionnaires, detailed physical and ultrasound examinations, behavioural observations, and biological samples. A genome wide association screen is available in the participating children. Regular detailed hands on assessment are performed from the age of 5 years onwards. Eventually, results forthcoming from the Generation R Study have to contribute to the development of strategies for optimizing health and healthcare for pregnant women and children

    Advanced capabilities for materials modelling with Quantum ESPRESSO

    Get PDF
    Quantum ESPRESSO is an integrated suite of open-source computer codes for quantum simulations of materials using state-of-the art electronic-structure techniques, based on density-functional theory, density-functional perturbation theory, and many-body perturbation theory, within the plane-wave pseudo-potential and projector-augmented-wave approaches. Quantum ESPRESSO owes its popularity to the wide variety of properties and processes it allows to simulate, to its performance on an increasingly broad array of hardware architectures, and to a community of researchers that rely on its capabilities as a core open-source development platform to implement theirs ideas. In this paper we describe recent extensions and improvements, covering new methodologies and property calculators, improved parallelization, code modularization, and extended interoperability both within the distribution and with external software

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & Nemésio 2007; Donegan 2008, 2009; Nemésio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016

    Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites

    Get PDF
    The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples.Peer reviewe

    Search for dark matter at √s=13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector

    Get PDF
    Results of a search for physics beyond the Standard Model in events containing an energetic photon and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. As the number of events observed in data, corresponding to an integrated luminosity of 36.1 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV, is in agreement with the Standard Model expectations, model-independent limits are set on the fiducial cross section for the production of events in this final state. Exclusion limits are also placed in models where dark-matter candidates are pair-produced. For dark-matter production via an axial-vector or a vector mediator in the s-channel, this search excludes mediator masses below 750–1200 GeV for dark-matter candidate masses below 230–480 GeV at 95% confidence level, depending on the couplings. In an effective theory of dark-matter production, the limits restrict the value of the suppression scale M∗ to be above 790 GeV at 95% confidence level. A limit is also reported on the production of a high-mass scalar resonance by processes beyond the Standard Model, in which the resonance decays to Zγ and the Z boson subsequently decays into neutrinos

    van der Waals Interactions in Material Modelling

    Get PDF
    Van der Waals (vdW) interactions stem from electronic zero-point fluctuations and are often critical for the correct description of structure, stability, and response properties of molecules and materials, including biomolecules, nanomaterials, and material interfaces. Here, we give a conceptual as well as mathematical overview of the current state of modeling vdW interactions,focusing in particular on the consequences of different approximations for practical applications. We present a systematic classification of approximate first-principles models based on the adiabatic-connection fluctuation-dissipation theorem, namely the nonlocal density functionals, interatomic methods, and methods based on the random-phase approximation. The applicability of these methods to different types of materials and material properties is discussed in connection with availability of theoretical and experimental benchmarks. We conclude with a roadmap of the open problems that remain to be solved to construct a universal, efficient, and accurate vdW model for realistic material modeling

    Diffusion Monte Carlo Study of Para -Diiodobenzene Polymorphism Revisited

    Get PDF
    We revisit our investigation of the diffusion Monte Carlo (DMC) simulation of p-DIB molecular crystal polymorphism. [J. Phys. Chem. Lett. 2010, 1, 1789-1794] We perform, for the first time, a rigorous study of finite-size effects and choice of nodal surface on the prediction of polymorph stability in molecular crystals using fixed-node DMC. Our calculations are the largest which are currently feasible using the resources of the K computer and provide insights into the formidable challenge of predicting such properties from first principles. In particular, we show that finite-size effects can influence the trial nodal surface of a small (1×1×1) simulation cell considerably. We therefore repeated our DMC simulations with a 1×3×3 simulation cell, which is the largest such calculation to date. We used a DFT nodal surface generated with the PBE functional and we accumulated statistical samples with ∼6.4×105 core-hours for each polymorph. Our final results predict a polymorph stability consistent with experiment, but indicate that results in our previous paper were somewhat fortuitous. We analyze the finite-size errors using model periodic Coulomb (MPC) interactions and kinetic energy corrections, according to the CCMH scheme of Chiesa, Ceperley, Martin, and Holzmann. We investigate the dependence of the finite-size errors on different aspect ratios of the simulation cell (k-mesh convergence) in order to understand how to choose an appropriate ratio for the DMC calculations. Even in the most expensive simulations currently possible, we show that the finite size errors in the DMC total energies are far larger than the energy difference between the two polymorphs, although error cancellation means that the polymorph prediction is accurate. Finally, we found that the T-move scheme is essential for these massive DMC simulations in order to circumvent population explosions and large time-step biases.Chemistry and Chemical Biolog
    corecore