144 research outputs found

    Isoscalar dipole mode in relativistic random phase approximation

    Get PDF
    The isoscalar giant dipole resonance structure in 208^{208}Pb is calculated in the framework of a fully consistent relativistic random phase approximation, based on effective mean-field Lagrangians with nonlinear meson self-interaction terms. The results are compared with recent experimental data and with calculations performed in the Hartree-Fock plus RPA framework. Two basic isoscalar dipole modes are identified from the analysis of the velocity distributions. The discrepancy between the calculated strength distributions and current experimental data is discussed, as well as the implications for the determination of the nuclear matter incompressibility.Comment: 9 pages, Latex, 3. p.s figs, submitted to Phys. Lett.

    The time-dependent relativistic mean-field theory and the random phase approximation

    Get PDF
    The Relativistic Random Phase Approximation (RRPA) is derived from the Time-dependent Relativistic Mean Field (TD RMF) theory in the limit of small amplitude oscillations. In the no-sea approximation of the RMF theory, the RRPA configuration space includes not only the usual particle-hole states, but also a-h configurations, i.e. pairs formed from occupied states in the Fermi sea and empty negative-energy states in the Dirac sea. The contribution of the negative energy states to the RRPA matrices is examined in a schematic model, and the large effect of Dirac sea states on isoscalar strength distributions is illustrated for the giant monopole resonance in 116Sn. It is shown that, because the matrix elements of the time-like component of the vector meson fields which couple the a-h configurations with the ph-configurations are strongly reduced with respect to the corresponding matrix elements of the isoscalar scalar meson field, the inclusion of states with unperturbed energies more than 1.2 GeV below the Fermi energy has a pronounced effect on giant resonances with excitation energies in the MeV region. The influence of nuclear magnetism, i.e. the effect of the spatial components of the vector fields is examined, and the difference between the non-relativistic and relativistic RPA predictions for the nuclear matter compression modulus is explained.Comment: 21 pages,2 figures, Nucl.Phys.A in pres

    Collective multipole excitations in a microscopic relativistic approach

    Full text link
    A relativistic mean field description of collective excitations of atomic nuclei is studied in the framework of a fully self-consistent relativistic random phase approximation (RRPA). In particular, results of RRPA calculations of multipole giant resonances and of low-lying collective states in spherical nuclei are analyzed. By using effective Lagrangians which, in the mean-field approximation, provide an accurate description of ground-state properties, an excellent agreement with experimental data is also found for the excitation energies of low-lying collective states and of giant resonances. Two points are essential for the successful application of the RRPA in the description of dynamical properties of finite nuclei: (i) the use of effective Lagrangians with non-linear terms in the meson sector, and (ii) the fully consistent treatment of the Dirac sea of negative energy states.Comment: 10 figures, submitted to Nucl.Phys.

    Cosmic Shear E/B-mode Estimation with Binned Correlation Function Data

    Full text link
    In this work I study the problem of E/B-mode separation with binned cosmic shear two-point correlation function data. Motivated by previous work on E/B-mode separation with shear two-point correlation functions and the practical considerations of data analysis, I consider E/B-mode estimators which are linear combinations of the binned shear correlation function data points. I demonstrate that these estimators mix E- and B-modes generally. I then show how to define estimators which minimize this E/B-mode mixing and give practical recipes for their construction and use. Using these optimal estimators, I demonstrate that the vector space composed of the binned shear correlation function data points can be decomposed into approximately ambiguous, E- and B-mode subspaces. With simple Fisher information estimates, I show that a non-trivial amount of information on typical cosmological parameters is contained in the ambiguous mode subspace computed in this formalism. Next, I give two examples which apply these practical estimators and recipes to generic problems in cosmic shear data analysis: data compression and spatially locating B-mode contamination. In particular, by using wavelet-like estimators with the shear correlation functions directly, one can pinpoint B-mode contamination to specific angular scales and extract information on its shape. Finally, I discuss how these estimators can be used as part of blinded or closed-box cosmic shear data analyses in order to assess and find B-mode contamination at high-precision while avoiding observer biases.Comment: 15 pages, 5 figures, 3 appendices, MNRAS submitted, comments welcome

    Bayesian analysis of cosmic structures

    Full text link
    We revise the Bayesian inference steps required to analyse the cosmological large-scale structure. Here we make special emphasis in the complications which arise due to the non-Gaussian character of the galaxy and matter distribution. In particular we investigate the advantages and limitations of the Poisson-lognormal model and discuss how to extend this work. With the lognormal prior using the Hamiltonian sampling technique and on scales of about 4 h^{-1} Mpc we find that the over-dense regions are excellent reconstructed, however, under-dense regions (void statistics) are quantitatively poorly recovered. Contrary to the maximum a posteriori (MAP) solution which was shown to over-estimate the density in the under-dense regions we obtain lower densities than in N-body simulations. This is due to the fact that the MAP solution is conservative whereas the full posterior yields samples which are consistent with the prior statistics. The lognormal prior is not able to capture the full non-linear regime at scales below ~ 10 h^{-1} Mpc for which higher order correlations would be required to describe the matter statistics. However, we confirm as it was recently shown in the context of Ly-alpha forest tomography that the Poisson-lognormal model provides the correct two-point statistics (or power-spectrum).Comment: 11 pages, 1 figure, report for the Astrostatistics and Data Mining workshop, La Palma, Spain, 30 May - 3 June 2011, to appear in Springer Series on Astrostatistic

    Planck 2013 results. XXII. Constraints on inflation

    Get PDF
    We analyse the implications of the Planck data for cosmic inflation. The Planck nominal mission temperature anisotropy measurements, combined with the WMAP large-angle polarization, constrain the scalar spectral index to be ns = 0:9603 _ 0:0073, ruling out exact scale invariance at over 5_: Planck establishes an upper bound on the tensor-to-scalar ratio of r < 0:11 (95% CL). The Planck data thus shrink the space of allowed standard inflationary models, preferring potentials with V00 < 0. Exponential potential models, the simplest hybrid inflationary models, and monomial potential models of degree n _ 2 do not provide a good fit to the data. Planck does not find statistically significant running of the scalar spectral index, obtaining dns=dln k = 0:0134 _ 0:0090. We verify these conclusions through a numerical analysis, which makes no slowroll approximation, and carry out a Bayesian parameter estimation and model-selection analysis for a number of inflationary models including monomial, natural, and hilltop potentials. For each model, we present the Planck constraints on the parameters of the potential and explore several possibilities for the post-inflationary entropy generation epoch, thus obtaining nontrivial data-driven constraints. We also present a direct reconstruction of the observable range of the inflaton potential. Unless a quartic term is allowed in the potential, we find results consistent with second-order slow-roll predictions. We also investigate whether the primordial power spectrum contains any features. We find that models with a parameterized oscillatory feature improve the fit by __2 e_ _ 10; however, Bayesian evidence does not prefer these models. We constrain several single-field inflation models with generalized Lagrangians by combining power spectrum data with Planck bounds on fNL. Planck constrains with unprecedented accuracy the amplitude and possible correlation (with the adiabatic mode) of non-decaying isocurvature fluctuations. The fractional primordial contributions of cold dark matter (CDM) isocurvature modes of the types expected in the curvaton and axion scenarios have upper bounds of 0.25% and 3.9% (95% CL), respectively. In models with arbitrarily correlated CDM or neutrino isocurvature modes, an anticorrelated isocurvature component can improve the _2 e_ by approximately 4 as a result of slightly lowering the theoretical prediction for the ` <_ 40 multipoles relative to the higher multipoles. Nonetheless, the data are consistent with adiabatic initial conditions

    Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Likelihoods and Parameters from the WMAP Data

    Get PDF
    The Wilkinson Microwave Anisotropy Probe (WMAP), launched in 2001, has mapped out the Cosmic Microwave Background with unprecedented accuracy over the whole sky. Its observations have led to the establishment of a simple concordance cosmological model for the contents and evolution of the universe, consistent with virtually all other astronomical measurements. The WMAP first-year and three-year data have allowed us to place strong constraints on the parameters describing the ACDM model. a flat universe filled with baryons, cold dark matter, neutrinos. and a cosmological constant. with initial fluctuations described by nearly scale-invariant power law fluctuations, as well as placing limits on extensions to this simple model (Spergel et al. 2003. 2007). With all-sky measurements of the polarization anisotropy (Kogut et al. 2003; Page et al. 2007), two orders of magnitude smaller than the intensity fluctuations. WMAP has not only given us an additional picture of the universe as it transitioned from ionized to neutral at redshift z approx.1100. but also an observation of the later reionization of the universe by the first stars. In this paper we present cosmological constraints from WMAP alone. for both the ACDM model and a set of possible extensions. We also consider tlle consistency of WMAP constraints with other recent astronomical observations. This is one of seven five-year WMAP papers. Hinshaw et al. (2008) describe the data processing and basic results. Hill et al. (2008) present new beam models arid window functions, Gold et al. (2008) describe the emission from Galactic foregrounds, and Wright et al. (2008) the emission from extra-Galactic point sources. The angular power spectra are described in Nolta et al. (2008), and Komatsu et al. (2008) present and interpret cosmological constraints based on combining WMAP with other data. WMAP observations are used to produce full-sky maps of the CMB in five frequency bands centered at 23, 33, 41, 61, and 94 GHz (Hinshaw et al. 2008). With five years of data, we are now able to place better limits on the ACDM model. as well as to move beyond it to test the composition of the universe. details of reionization. sub-dominant components, characteristics of inflation, and primordial fluctuations. We have more than doubled the amount of polarized data used for cosmological analysis. allowing a better measure of the large-scale E-mode signal (Nolta et al. 2008). To this end we describe an alternative way to remove Galactic foregrounds from low resolution polarization maps in which Galactic emission is marginalized over, providing a cross-check of our results. With longer integration we also better probe the second and third acoustic peaks in the temperature angular power spectrum, and have many more year-to-year difference maps available for cross-checking systematic effects (Hinshaw et al. 2008)

    Determination of Specific Electrocatalytic Sites in the Oxidation of Small Molecules on Crystalline Metal Surfaces

    Get PDF
    The identification of active sites in electrocatalytic reactions is part of the elucidation of mechanisms of catalyzed reactions on solid surfaces. However, this is not an easy task, even for apparently simple reactions, as we sometimes think the oxidation of adsorbed CO is. For surfaces consisting of non-equivalent sites, the recognition of specific active sites must consider the influence that facets, as is the steps/defect on the surface of the catalyst, cause in its neighbors; one has to consider the electrochemical environment under which the “active sites” lie on the surface, meaning that defects/steps on the surface do not partake in chemistry by themselves. In this paper, we outline the recent efforts in understanding the close relationships between site-specific and the overall rate and/or selectivity of electrocatalytic reactions. We analyze hydrogen adsorption/desorption, and electro-oxidation of CO, methanol, and ammonia. The classical topic of asymmetric electrocatalysis on kinked surfaces is also addressed for glucose electro-oxidation. The article takes into account selected existing data combined with our original works.M.J.S.F. is grateful to PNPD/CAPES (Brazil). J.M.F. thanks the MCINN (FEDER, Spain) project-CTQ-2016-76221-P

    Planck intermediate results. XLIX. Parity-violation constraints from polarization data

    Get PDF
    Parity-violating extensions of the standard electromagnetic theory cause in vacuo rotation of the plane of polarization of propagating photons. This effect, also known as cosmic birefringence, has an impact on the cosmic microwave background (CMB) anisotropy angular power spectra, producing non-vanishing T–B and E–B correlations that are otherwise null when parity is a symmetry. Here we present new constraints on an isotropic rotation, parametrized by the angle α, derived from Planck 2015 CMB polarization data. To increase the robustness of our analyses, we employ two complementary approaches, in harmonic space and in map space, the latter based on a peak stacking technique. The two approaches provide estimates for α that are in agreement within statistical uncertainties and are very stable against several consistency tests.Considering the T–B and E–B information jointly, we find from the harmonic analysis and from the stacking approach. These constraints are compatible with no parity violation and are dominated by the systematic uncertainty in the orientation of Planck’s polarization-sensitive bolometers
    • 

    corecore