595 research outputs found

    A grid of 1D low-mass star formation collapse models

    Full text link
    The current study was developed to provide a database of relatively simple numerical simulations of protostellar collapse, as a template library for observations of cores and very young protostars, and for researchers who wish to test their chemical modeling under dynamic astrophysical conditions. It was also designed to identify statistical trends that may appear when running many models of the formation of low-mass stars by varying the initial conditions. A large set of 143 calculations of the gravitational collapse of an isolated sphere of gas with uniform temperature and a Bonnor-Ebert like density profile was undertaken using a 1D fully implicit Lagrangian radiation hydrodynamics code. The parameter space covered initial masses from 0.2 to 8 Msun, temperatures of 5-30 K and radii between 3000 and 30,000 AU. A spread in the thermal evolutionary tracks of the runs was found, due to differing initial conditions and optical depths. Within less than an order of magnitude, all first and second Larson cores had masses and radii independent of the initial conditions. The time elapsed between the formation of the first and second cores was found to strongly depend on the first core mass accretion rate, and no first core in our grid of models lived for longer than 2000 years, before the onset of the second collapse. The end product of a protostellar cloud collapse, the second Larson core, is, at birth, a canonical object with a mass and radius of about 3 Mjup and 8 Rjup, independent of its initial conditions. The evolution sequence which brings the gas to stellar densities can however proceed in a variety of scenarios, on different timescales, along different isentropes, but each story line can largely be predicted by the initial conditions. All the data from the simulations are publicly available at this address: http://starformation.hpc.ku.dk/grid-of-protostars.Comment: 24 pages, 14 figures, accepted for publication in A&

    Infall-Driven Protostellar Accretion and the Solution to the Luminosity Problem

    Full text link
    We investigate the role of mass infall in the formation and evolution of protostars. To avoid ad hoc initial and boundary conditions, we consider the infall resulting self-consistently from modeling the formation of stellar clusters in turbulent molecular clouds. We show that infall rates in turbulent clouds are comparable to accretion rates inferred from protostellar luminosities or measured in pre-main-sequence stars. They should not be neglected in modeling the luminosity of protostars and the evolution of disks, even after the embedded protostellar phase. We find large variations of infall rates from protostar to protostar, and large fluctuations during the evolution of individuals protostars. In most cases, the infall rate is initially of order 10−5^{-5}\msun\ yr−1^{-1}, and may either decay rapidly in the formation of low-mass stars, or remain relatively large when more massive stars are formed. The simulation reproduces well the observed characteristic values and scatter of protostellar luminosities and matches the observed protostellar luminosity function. The luminosity problem is therefore solved once realistic protostellar infall histories are accounted for, with no need for extreme accretion episodes. These results are based on a simulation of randomly-driven magneto-hydrodynamic turbulence on a scale of 4pc, including self-gravity, adaptive-mesh refinement to a resolution of 50AU, and accreting sink particles. The simulation yields a low star formation rate, consistent with the observations, and a mass distribution of sink particles consistent with the observed stellar initial mass function during the whole duration of the simulation, forming nearly 1,300 sink particles over 3.2 Myr.Comment: 21 pages, 16 figures, accepted for publication in Ap

    The stellar IMF from Isothermal MHD Turbulence

    Full text link
    We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 Msun and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfven velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.Comment: 25 pages, 21 figures, Accepted by Ap

    LCC pĂĽ bygninger:Renovering kontra nedrivning og nybyggeri

    Get PDF

    Bassem Chit and Revolutionary Socialism in Lebanon

    Get PDF
    This article discusses the Lebanese activist and writer Bassem Chit as an example of the intellectual rebel in Lebanon and the Arab world. It analyses the ideological tradition of revolutionary socialism and the Arab left. Through an analysis of interviews and articles, Haugbolle attempts to locate the place and nature of intellectual production in the organisation of revolutionary activity, and the particular role rebel intellectuals play in bringing about social change. It draws on the sociology of intellectuals, in particular Gramsci, in the analysis of Bassem Chit’s work and his post mortem veneration

    Promoting sustainable construction through insurance:Elios2 Flyer

    Get PDF

    Elios2:The new challenging project

    Get PDF

    13 tips om totaløkonomi. Et redskab til bedre beslutninger om byggeri

    Get PDF

    Changing Construction:Perspectives on Knowledge and Learning

    Get PDF
    • …
    corecore